मराठी

Write the Ratio in Which the Line Segment Joining (A, B, C) and (−A, −C, −B) is Divided by the Xy-plane. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.

बेरीज

उत्तर

\[ \text{ Suppose the line segment joining the points } \left( a, b, c \right) \text{ and } \left( - a, - c, - b \right) \text{ is divided by the XY - plane at a point R in the ratio } \lambda: 1 . \]

\[\text{ Coordinates of R are}  \]

\[\left( \frac{\lambda\left( - a \right) + 1\left( a \right)}{\lambda + 1}, \frac{\lambda\left( - c \right) + 1\left( b \right)}{\lambda + 1}, \frac{\lambda\left( - b \right) + 1\left( c \right)}{\lambda + 1} \right)\]

\[\text{ Since R lies on XY - plane, Z - coordinate of R must be zero } . \]

\[ \Rightarrow \frac{\lambda\left( - b \right) + 1\left( c \right)}{\lambda + 1} = 0 = \frac{c}{b} \]

\[\text{ Thus, the required ratio is } \frac{c} {b: 1} \  \text{or } {c: b} . \]

\[ \text{ Hence, the XY - plane divides the line in the ratio }  c: b .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Very Short Answers [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Very Short Answers | Q 10 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the direction cosines of the lines, connected by the relations: l + m +n = 0 and 2lm + 2ln − mn= 0.


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


Define direction cosines of a directed line.


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.


Write the coordinates of the projection of point P (xyz) on XOZ-plane.


If a line has direction ratios proportional to 2, −1, −2, then what are its direction consines?


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Find the direction cosines and direction ratios for the following vector

`3hat"i" + hat"j" + hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×