मराठी

If the Coordinates of the Points A, B, C, D Are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), Then Find the Angle Between Ab and Cd. - Mathematics

Advertisements
Advertisements

प्रश्न

If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.

बेरीज

उत्तर

\[\text { The given points are } A \left( 1, 2, 3 \right), B\left( 4, 5, 7 \right), C\left( - 4, 3, - 6 \right) \text{ and } D \left( 2, 9, 2 \right) . \]

\[\text { We know that the direction ratios of the line joining the points } \left( x_1 , y_1 , z_1 \right) \text { and } \left( x_2 , y_2 , z_2 \right) \text { are } x_2 - x_1 , y_2 - y_1 , z_2 - z_1 . \]

\[\text { The direction ratios of AB are } \left( 4 - 1 \right), \left( 5 - 2 \right), \left( 7 - 3 \right), \text { i . e } . 3, 3, 4 . \]

\[\text { The direction ratios of CD are } \left[ 2 - \left( - 4 \right) \right], \left( 9 - 3 \right), \left[ 2 - \left( - 6 \right) \right], \text { i . e }. 6, 6, 8 . \]

\[\text { Let } \theta  \text { be the angle between AB and CD } . \]

\[\text { We have } \]

\[ a_1 = 3, b_1 = 3, c_1 = 4 \]

\[ a_2 = 6, b_2 = 6, c_2 = 8\]

\[ \therefore \cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{{a_1}^2 + {b_1}^2 + {c_1}^2}\sqrt{{a_2}^2 + {b_2}^2 + {c_2}^2}} = \frac{18 + 18 + 32}{\sqrt{9 + 9 + 16}\sqrt{36 + 36 + 64}} = \frac{68}{68} = 1\]

\[ \Rightarrow \theta = 0° \]

\[\text { Thus, the angle between AB and CD measures } 0° . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Direction Cosines and Direction Ratios - Exercise 27.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 27 Direction Cosines and Direction Ratios
Exercise 27.1 | Q 14 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Find the angle between the lines whose direction ratios are 4, –3, 5 and 3, 4, 5.


Find the Direction Cosines of the Sides of the triangle Whose Vertices Are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).


If l1m1n1 and l2m2n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2 − m2n1n1l2 − n2l1l1m2 ­− l2m1.


If a line makes angles of 90°, 60° and 30° with the positive direction of xy, and z-axis respectively, find its direction cosines


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.


Write direction cosines of a line parallel to z-axis.


Answer each of the following questions in one word or one sentence or as per exact requirement of the question:
Write the distance of a point P(abc) from x-axis.


The distance of the point P (abc) from the x-axis is 


The angle between the two diagonals of a cube is


 

 


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Verify whether the following ratios are direction cosines of some vector or not

`4/3, 0, 3/4`


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"i" - hat"k"`


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.


If the directions cosines of a line are k,k,k, then ______.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


The Cartesian equation of a line AB is: `(2x - 1)/2 = (y + 2)/2 = (z - 3)/3`. Find the direction cosines of a line parallel to line AB.


A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


Equation of line passing through origin and making 30°, 60° and 90° with x, y, z axes respectively, is ______.


Find the coordinates of the foot of the perpendicular drawn from point (5, 7, 3) to the line `(x - 15)/3 = (y - 29)/8 = (z - 5)/-5`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×