मराठी

Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).

बेरीज

उत्तर

The direction cosines of a line passing through the points P(x1, y1, z1) and Q(x2, y2, z2) are

`(x_2 - x_1)/"PQ"`

`(y_2 - y_1)/"PQ"`

`(z_2 - z_1)/"PQ"`

Here PQ = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2`

= `sqrt((-1 - 2)^2 + (2 - 3)^2 + (4 - 5)^2`

= `sqrt(9 + 1 + 1)`

= `sqrt(11)`

Hence D.C.’s are `+-((-3)/sqrt(11), (-1)/sqrt(11), (-1)/sqrt(11))` or `+- (3/sqrt(11), 1/sqrt(11), 1/sqrt(11))`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २२४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Solved Examples | Q 2 | पृष्ठ २२४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`


If a line has direction ratios 2, −1, −2, determine its direction cosines.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction cosines are given by the equations

2l − m + 2n = 0 and mn + nl + lm = 0


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


What are the direction cosines of Y-axis?


If a unit vector  `vec a` makes an angle \[\frac{\pi}{3} \text{ with } \hat{i} , \frac{\pi}{4} \text{ with }  \hat{j}\] and an acute angle θ with \[\hat{ k} \] ,then find the value of θ.


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The direction ratios of the line which is perpendicular to the lines with direction ratios –1, 2, 2 and 0, 2, 1 are _______.


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


If `1/2, 1/sqrt(2), "a"` are the direction cosines of some vector, then find a


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `vec"a", vec"b", vec"c"`


If `vec"a" = 2hat"i" + 3hat"j" - 4hat"k", vec"b" = 3hat"i" - 4hat"j" - 5hat"k"`, and `vec"c" = -3hat"i" + 2hat"j" + 3hat"k"`,  find the magnitude and direction cosines of `3vec"a"- 2vec"b"+ 5vec"c"`


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


If a line makes angles α, β, γ with the positive directions of the coordinate axes, then the value of sin2α + sin2β + sin2γ is ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


If the directions cosines of a line are k,k,k, then ______.


The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If the equation of a line is x = ay + b, z = cy + d, then find the direction ratios of the line and a point on the line.


If a line makes angles of 90°, 135° and 45° with the x, y and z axes respectively, then its direction cosines are ______.


Find the coordinates of the image of the point (1, 6, 3) with respect to the line `vecr = (hatj + 2hatk) + λ(hati + 2hatj + 3hatk)`; where 'λ' is a scalar. Also, find the distance of the image from the y – axis.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×