हिंदी

Write the direction ratios of the following line : x = −3, (y−4)/3 =( 2 −z)/1 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the direction ratios of the following line :

`x = −3, (y−4)/3 =( 2 −z)/1`

उत्तर

The equation of the given line can be rewritten as:

`(x+3)/0=(y−4)/3=(z−2)/(−1)`

Thus, the given line has direction ratios proportional to 0, 3, −1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Patna Set 2

संबंधित प्रश्न

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Find the vector equation of the plane passing through (1, 2, 3) and perpendicular to the plane `vecr.(hati + 2hatj -5hatk) + 9 = 0`


If a line has direction ratios 2, −1, −2, determine its direction cosines.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


What are the direction cosines of X-axis?


What are the direction cosines of Z-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


A line makes an angle of 60° with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Find the distance of the point (2, 3, 4) from the x-axis.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.


Verify whether the following ratios are direction cosines of some vector or not

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians


If (a, a + b, a + b + c) is one set of direction ratios of the line joining (1, 0, 0) and (0, 1, 0), then find a set of values of a, b, c


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


P is a point on the line segment joining the points (3, 2, –1) and (6, 2, –2). If x co-ordinate of P is 5, then its y co-ordinate is ______.


A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If two straight lines whose direction cosines are given by the relations l + m – n = 0, 3l2 + m2 + cnl = 0 are parallel, then the positive value of c is ______.


If a line makes an angle α, β and γ with positive direction of the coordinate axes, then the value of sin2α + sin2β + sin2γ will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×