Advertisements
Advertisements
प्रश्न
Find the direction cosines and direction ratios for the following vector
`hat"j"`
उत्तर
`hat"j" = 0hat"i" + hat"j" + 0hat"k"`
The direction ratios of the vector `hat"j"` are (0, 1, 0)
The direction cosines of the vector `hat"j"` are
`0/sqrt(0^2 + 1^2 + 0^2), 1/sqrt(0^2 + 1^2 + 0^2), 0/sqrt(0^2 + 1^2 + 0^2)`
`0/1, 1/1, 0/1`
(0, 1, 0)
Direction ratios = (0, 1, 0)
Direction cosines = (0, 1, 0)
APPEARS IN
संबंधित प्रश्न
Find the direction cosines of the line perpendicular to the lines whose direction ratios are -2, 1,-1 and -3, - 4, 1
Write the direction ratios of the following line :
`x = −3, (y−4)/3 =( 2 −z)/1`
Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).
Define direction cosines of a directed line.
Write the distance of the point (3, −5, 12) from X-axis?
Write the inclination of a line with Z-axis, if its direction ratios are proportional to 0, 1, −1.
Write the angle between the lines whose direction ratios are proportional to 1, −2, 1 and 4, 3, 2.
The xy-plane divides the line joining the points (−1, 3, 4) and (2, −5, 6)
Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is
If a line makes angles 90°, 135°, 45° with the x, y and z axes respectively, find its direction cosines.
Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.
Verify whether the following ratios are direction cosines of some vector or not
`1/5, 3/5, 4/5`
If the direction ratios of a line are 1, 1, 2, find the direction cosines of the line.
A line makes equal angles with co-ordinate axis. Direction cosines of this line are ______.
Find the equations of the two lines through the origin which intersect the line `(x - 3)/2 = (y - 3)/1 = z/1` at angles of `pi/3` each.
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
The co-ordinates of the point where the line joining the points (2, –3, 1), (3, –4, –5) cuts the plane 2x + y + z = 7 are ______.
A line passes through the points (6, –7, –1) and (2, –3, 1). The direction cosines of the line so directed that the angle made by it with positive direction of x-axis is acute, are ______.