Advertisements
Advertisements
प्रश्न
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.
उत्तर
The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are `2/3, 2/3, (-1)/3`.
Explanation:
Let `vec"a" = 2hat"i" + 2hat"j" - hat"k"`
Direction ratios of `vec"a"` are 2, 2, – 1
So, the direction cosines are `2/sqrt(4 + 4 + 1)`
`2/sqrt(4 + 4 + 1)`
`-1/sqrt(4 + 4 + 1)`
⇒ `2/3, 2/3, (-1)/3`
APPEARS IN
संबंधित प्रश्न
Which of the following represents direction cosines of the line :
(a)`0,1/sqrt2,1/2`
(b)`0,-sqrt3/2,1/sqrt2`
(c)`0,sqrt3/2,1/2`
(d)`1/2,1/2,1/2`
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .
Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).
Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.
Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.
If the coordinates of the points A, B, C, D are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.
Find the angle between the lines whose direction cosines are given by the equations
l + 2m + 3n = 0 and 3lm − 4ln + mn = 0
What are the direction cosines of Y-axis?
Write the ratio in which the line segment joining (a, b, c) and (−a, −c, −b) is divided by the xy-plane.
For every point P (x, y, z) on the xy-plane,
For every point P (x, y, z) on the x-axis (except the origin),
A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is
The distance of the point P (a, b, c) from the x-axis is
If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio
If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are
The angle between the two diagonals of a cube is
If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to
Find the direction cosines of a vector whose direction ratios are
1, 2, 3
Find the direction cosines of a vector whose direction ratios are
0, 0, 7
Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).
If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.
If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.
The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`
O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.
The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.
If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.
Find the direction cosine of a line which makes equal angle with coordinate axes.
If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.
Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.