हिंदी

The direction cosines of vector ijk(2i^+2j^-k^) are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are ______.

रिक्त स्थान भरें

उत्तर

The direction cosines of vector `(2hat"i" + 2hat"j" - hat"k")` are `2/3, 2/3, (-1)/3`.

Explanation:

Let `vec"a" = 2hat"i" + 2hat"j" - hat"k"`

Direction ratios of `vec"a"` are 2, 2, – 1

So, the direction cosines are `2/sqrt(4 + 4 + 1)`

`2/sqrt(4 + 4 + 1)`

`-1/sqrt(4 + 4 + 1)`

⇒ `2/3, 2/3, (-1)/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 38 | पृष्ठ २३९

संबंधित प्रश्न

Which of the following represents direction cosines of the line :

(a)`0,1/sqrt2,1/2`

(b)`0,-sqrt3/2,1/sqrt2`

(c)`0,sqrt3/2,1/2`

(d)`1/2,1/2,1/2`


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


Find the direction cosines of the line passing through two points (−2, 4, −5) and (1, 2, 3) .


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors whose direction cosines are proportional to 2, 3, −6 and 3, −4, 5.


Show that the points (2, 3, 4), (−1, −2, 1), (5, 8, 7) are collinear.


If the coordinates of the points ABCD are (1, 2, 3), (4, 5, 7), (−4, 3, −6) and (2, 9, 2), then find the angle between AB and CD.


Find the angle between the lines whose direction cosines are given by the equations

 l + 2m + 3n = 0 and 3lm − 4ln + mn = 0


What are the direction cosines of Y-axis?


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


For every point P (xyz) on the xy-plane,

 


For every point P (xyz) on the x-axis (except the origin),


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


The distance of the point P (abc) from the x-axis is 


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


The angle between the two diagonals of a cube is


 

 


If a line makes angles α, β, γ, δ with four diagonals of a cube, then cos2 α + cos2 β + cos2γ + cos2 δ is equal to


Find the direction cosines of a vector whose direction ratios are
1, 2, 3


Find the direction cosines of a vector whose direction ratios are
0, 0, 7


Find the direction cosines of the line passing through the points P(2, 3, 5) and Q(–1, 2, 4).


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes an angle of `pi/4` with each of y and z-axis, then the angle which it makes with x-axis is ______.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is `vec"r" = 3hat"i" + 5hat"j" + 4hat"k" + lambda(2hat"i" + 3hat"j" + 7hat"k")`


O is the origin and A is (a, b, c). Find the direction cosines of the line OA and the equation of plane through A at right angle to OA.


The line `vec"r" = 2hat"i" - 3hat"j" - hat"k" + lambda(hat"i" - hat"j" + 2hat"k")` lies in the plane `vec"r".(3hat"i" + hat"j" - hat"k") + 2` = 0.


If a line makes angles 90°, 135°, 45° with x, y and z-axis respectively then which of the following will be its direction cosine.


Find the direction cosine of a line which makes equal angle with coordinate axes.


If a line has the direction ratio – 18, 12, – 4, then what are its direction cosine.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×