Advertisements
Advertisements
Question
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
Solution
Let the given vectors be `vec"AB" = 2hat"i" - hat"j" + hat"k"`
`vec"BC" = 3hat"i" - 4hat"j" - 4hat"k"` and `vec"AC" = hat"i" - 3hat"j" - hat"k"`
`|vec"AB"| = |2hat"i" - hat"j" + hat"k"|`
AB = `sqrt(2^2 + (-1)^2 + 1^2)`
= `sqrt(4 + 1 + 1)`
AB = `sqrt(6)`
`|vec"BC"| = |3hat"i" - 4hat"j" - 4hat"k"|`
BC = `sqrt(3^2 + (-4)^2 + (-4)^2`
= `sqrt(9 + 16 + 16)`
BC = `sqrt(41)`
`|vec"AC"| = |hat"i" - 3hat"j" - 5hat"k"|`
AC = `sqrt(1^2 + (-3)^2 + (-5)^2`
= `sqrt(1 +9 + 25)`
AC = `sqrt(35)`
AB2 + AC2 = 6 + 35 = 41 .......(1)
BC2 = 41 .......(2)
From equation (1) and (2), we get
AB2 + AC2 = BC2
∴ The given vectors from right anled triange.
APPEARS IN
RELATED QUESTIONS
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`
Find the angle between the vectors
`hat"i" - hat"j"` and `hat"j" - hat"k"`
Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`
Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is
Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is
Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to