English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Show that the vectors ijkijk-i^-2j^-6k^,2i^-j^+k^ and find ijk-i^+3j^+5k^ form a right angled triangle - Mathematics

Advertisements
Advertisements

Question

Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle

Sum

Solution

Let `vec"AB"| = -hat"i" - 2hat"j" - 6hat"k"`

`vec"BC" = 2hat"i" - hat"j" + hat"k"`

and `vec"CA" = -hat"i" - 2hat"j" - 5hat"k"`

`|vec"AB"| = |-hat"i" - 2hat"j" - 6hat"k"|`

= `sqrt((-1)^2 + (-2)^2 + (-6)^2`

AB = `sqrt(1 + 4 + 36)`

= `sqrt(41)`

`|vec"BC"| = |2hat"i" - hat"j" + hat"k"|`

= `sqrt(2^2 + (-1)^2 + 1^2)`

BC = `sqrt(4 + 1 + 1)`

= `sqrt(6)`

`|vec"CA"| = |-hat"i" + 3hat"j" + 5hat"k"|`

= `sqrt((-1)^2 + 3^2 + 5^2)`

CA = `sqrt(1 + 9 + 25)`

= `sqrt(35)`

AB ≠ BC + CA

∴ The given vectors form a triangle, Also

AB2 = 41, BC2 = 6, CA2 = 35

AB2 = BC2 + CA2

∴ ∆ABC is a right angled triangle.

shaalaa.com
Product of Vectors
  Is there an error in this question or solution?
Chapter 8: Vector Algebra - Exercise 8.3 [Page 74]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 8 Vector Algebra
Exercise 8.3 | Q 7 | Page 74

RELATED QUESTIONS

Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`sin  theta/2 = 1/2|vec"a" - vec"b"|`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`cos  theta/2 = 1/2|vec"a" + vec"b"|`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`tan  theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`


Find the value λ for which the vectors `vec"a"` and  `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`


Find the angle between the vectors

`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`


Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`


Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`


Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)


If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C


For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`


Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`


Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×