Advertisements
Advertisements
Question
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Solution
Given `vec"a", vec"b", vec"c"` are unit vectors.
∴ `|vec"a"|` = 1
`|vec"b"|` = 1
`|vec"c"|` = 1
Also `vec"a" * vec"b"` = 0, `vec"a" * vec"c"` = 0
Angle between `vec"b"` and `vec"c" = pi/3`
`vec"a" * vec"b"` = 0
⇒ `vec"a"` ⊥r `vec"b"`
`vec"a" * vec"c"` = 0
⇒ `vec"a"` ⊥r `vec"c"`
∴ `vec"a"` is perpendicular to both `vec"b"` and `vec"c"`
`vec"b" xx vec"c" = |vec"b"||vec"c"| sin pi/3 hat"n"`
When `hat"n"` is a unit vector perpendicular to both `vec"b"` and `vec"c"` which is `vec"a"`.
`vec"b" xx vec"c" = 1 xx 1 xx sqrt(3)/2 xx hat"n"`
`+- 2/sqrt(3) (vec"b" xx vec"c") = +- 2/sqrt(3) xx sqrt(3)/2 xx hat"n"`
`+- 2/sqrt(3) (vec"b" xx vec"c") = +- hat"n"` .......(1)
`+- hat"n"` is a unit vector perpendicular to both `vec"b"` and `vec"c"` which is `vec"a"`
(1) ⇒ `+- 2/sqrt(3) (vec"b" xx vec"c") = vec"a"`
`vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
APPEARS IN
RELATED QUESTIONS
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`
Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`
Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is
Choose the correct alternative:
If the projection of `5hat"i" - hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" - hat"j" - 3hat"k"`, then λ is equal to
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is