Advertisements
Advertisements
Question
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Solution
Given `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`
Also `vec"a" + vec"b" + vec"c" = vec0`
`vec"a" + vec"b" = vec"c"`
`(vec"a" + vec"b")^2 = (- vec"c")^2`
`vec"a"^2 + vec"b"^2 + 2vec"a"*vec"b" = vec"c"^2`
`|vec"a"|^2 + |vec"b"|^2 + 2vec"a"*vec"b" = |vec"c"|^2`
`2^2 + 3^2 + 2vec"a"*vec"b" = 4^2`
`4 + 9 + 2vec"a"*vec"b"` = 16
`2vec"a"*vec"b"` = 16 – 13
`vec"a" * vec"b" = 3/2`
`vec"a" + vec"b" + vec"c" = vec0`
`(vec"a" + vec"b" + vec"c")^2 = (vec0)^2`
`vec"a"^2 + vec"b"^2 + vec"c"^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"` = 0
`|vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
`2^2 + 3^2 + 4^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
`4 + 9 + 16 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
`2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = – 29
`vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a" = - 29/2`
`3(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a") = – 29/2 xx 3`
`vec"a"*vec"b" + vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a" = -29/2 xx 3 + vec"a"*vec"b"`
`4vec"a"*vec"b" + vec"b"*vec"c" + 3vec"c"*vec"a" = - 29/2 xx 3 + 3/2`
= `3/2 (- 29 + 1)`
= `3/2 xx - 28`
`4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"` = 3 × – 14
APPEARS IN
RELATED QUESTIONS
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is
Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to
Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is
Choose the correct alternative:
If the projection of `5hat"i" - hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" - hat"j" - 3hat"k"`, then λ is equal to