मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Three vectors aba→,b→ and cc→ are such that abc|a→|=2,|b→|=3,|c→|=4, and abca→+b→+c→=0→. Find abbcca4a→⋅b→+3b→⋅c→+3c→⋅a→ - Mathematics

Advertisements
Advertisements

प्रश्न

Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`

बेरीज

उत्तर

Given `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`

Also `vec"a" + vec"b" + vec"c" = vec0`

`vec"a" + vec"b" = vec"c"`

`(vec"a" + vec"b")^2 = (- vec"c")^2`

`vec"a"^2 + vec"b"^2 + 2vec"a"*vec"b" = vec"c"^2`

`|vec"a"|^2 + |vec"b"|^2 + 2vec"a"*vec"b" = |vec"c"|^2`

`2^2 + 3^2 + 2vec"a"*vec"b" = 4^2`

`4 + 9 + 2vec"a"*vec"b"` = 16

`2vec"a"*vec"b"` = 16 – 13

`vec"a" * vec"b" = 3/2`

`vec"a" + vec"b" + vec"c" = vec0`

`(vec"a" + vec"b" + vec"c")^2 = (vec0)^2`

`vec"a"^2 + vec"b"^2 + vec"c"^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"` = 0

`|vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0

`2^2 + 3^2 + 4^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0

`4 + 9 + 16 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0

`2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = – 29

`vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a" = - 29/2`

`3(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a") = – 29/2 xx 3`

Adding both sides b `vec"a"*vec"b"`\

`vec"a"*vec"b" + vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a" = -29/2 xx 3 + vec"a"*vec"b"`

`4vec"a"*vec"b" + vec"b"*vec"c" + 3vec"c"*vec"a" = - 29/2 xx 3 + 3/2`

= `3/2 (- 29 + 1)`

= `3/2 xx - 28`

`4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"` = 3 × – 14

= – 42
shaalaa.com
Product of Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.3 [पृष्ठ ७४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.3 | Q 14 | पृष्ठ ७४

संबंधित प्रश्‍न

Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear


Find the value λ for which the vectors `vec"a"` and  `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal


Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle


Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`


Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`


Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`


Find the area of the parallelogram whose two adjacent sides are determined by the vectors  `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`


If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C


Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`


Choose the correct alternative:
A vector `vec"OP"` makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between `vec"OP"` and the z-axis is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If the projection of `5hat"i" -  hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" -  hat"j" - 3hat"k"`, then λ is equal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×