Advertisements
Advertisements
प्रश्न
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
उत्तर
Given `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5`
Also `vec"a" * (vec"b" + vec"c")` = 0,
`vec"b" * (vec"c" + vec"a")` = 0
`vec"c" * (vec"a" + vec"b")` = 0
`vec"a" * (vec"b" + vec"c")` = 0
`vec"a" * vec"b" + vec"a" * vec"c"` = 0 ........(1)
`vec"b" * (vec"c" + vec"a")` = 0
`vec"b" * vec"c" + vec"b" * vec"a"` = 0 ........(2)
`vec"c" * (vec"a" + vec"b")` = 0
`vec"c" * vec"a" + vec"c" * vec"b"` = 0 ........(3)
Equation (1) + (2) + (3) ⇒
`vec"a" * vec"b" + vec"a" * vec"c" + vec"b" * vec"c" + vec"b" * vec"a" + vec"c" * vec"a" + vec"c" * vec"b"` = 0
`vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c" + vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c"` = 0
`2vec"a" * vec"b" + 2vec"b" * 2vec"c" * vec"a"` = 0
`2(vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a")` = 0
`(vec"a" + vec"b" + vec"c")^2 = vec"a"^2 + vec"b"^2 + vec"c"^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"`
`|vec"a" + vec"b" + vec"c"|^2 = |vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")`
= `3^2 + 4^2 + 5^2 + 0`
= 9 + 16 + 25
= 25 + 25
`|vec"a" + vec"b" + vec"c"|^2` = 50
`|vec"a" + vec"b" + vec"c"| = sqrt(2 xx 25) = sqrt(50)`
`|vec"a" + vec"b" + vec"c"| = 5sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`
If `vec"a"` and `vec"b"` are two vectors such that `|vec"a"| = 10, |vec"b"| = 15` and `vec"a"*vec"b" = 75sqrt(2)`, find the angle between `vec"a"` and `vec"b"`
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Find the area of the parallelogram whose two adjacent sides are determined by the vectors `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is