मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

For any vector aa→ prove that aiajaka|a→×i^|2+|a→×j^|2+|a→×k^|2=2|a→|2 - Mathematics

Advertisements
Advertisements

प्रश्न

For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`

बेरीज

उत्तर

Let `vec"a" = "a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k"`

`vec"a" xx hat"i" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"i"`

= `"a"_1 hat"i" xx hat"i" + "a"_2hat"j" xx hat"i" + "a"_3hat"k" xx hat"i"`

= `"a"_1 xx 0 - "a"_2hat"k" + "a"_3hat"j"`

`vec"a" xx hat"i" =  "a"_3hat"j" - "a"_2 hat"k"`

`|vec"a" xx hat"i"| = sqrt("a"_3^2 + (- "a"_2)^2`

`|vec"a" xx hat"i"|^2 = "a"_3^2 + "a"_2^2`   .......(1)

`vec"a" xx hat"j" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"j"`

= `"a"_1 hat"i" xx hat"j" + "a"_2 hat"j" xx hat"j" + "a"_3 hat"k" xx hat"j"`

= `"a"_1 hat"k" + "a"_2 xx 0 - "a"_3 hat"i"`

`vec"a" xx hat"j" = "a"_1 hat"k" - "a"_3 hat"i"`

`|vec"a" xx hat"j"| = sqrt("a"_1^2 + (- "a"_3)^2`

`|vec"a" xx hat"j"|^2 = "a"_1^2 + "a"_3^2`   ........(2)

`vec"a" xx vec"k" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"k"`

= `"a"_1 hat"i" xx hat"k" + "a"_2 hat"j" xx hat"k" + "a"_3 hat"k" xx hat"k"`

= `"a"_1 (- hat"j") + "a"_2 hat"i" + 0`

`vec"a" xx hat"k" = "a"_2 hat"i" - "a"_1 hat"j"`

`|vec"a" xx hat"k"| = sqrt("a"_2^2 + (- "a"_1)^2`

`|vec"a" xx hat"k"|^2 = "a"_2^2 + "a"_1^2`   .......(3)

Equation (1) + (2) + (3) ⇒

`|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2`

= `"a"_3^2 + "a"_2^2 + "a"_1^2 + "a"_3^2 + "a"_2^2 + "a"_1^2`

= `2("a"_1^2 + "a"_2^2 + "a"_3^2)`  .......(4)

`|vec"a"| = |"a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k"|`

`|vec"a"| = sqrt("a"_1^2 + "a"_2^2 + "a"_3^2)`

`|vec"a"| =  "a"_1^2 + "a"_2^2 + "a"_3^2`   .......(5)

From equation (4) and (5)

`|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`

shaalaa.com
Product of Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.4 [पृष्ठ ८०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.4 | Q 8 | पृष्ठ ८०

संबंधित प्रश्‍न

If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`cos  theta/2 = 1/2|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`


Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal


Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`


Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`


Find the area of the parallelogram whose two adjacent sides are determined by the vectors  `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is


Choose the correct alternative:
If the projection of `5hat"i" -  hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" -  hat"j" - 3hat"k"`, then λ is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×