मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If abca→,b→,c→ are three vectors such that abca→+2b→+c→ = 0 and abc|a→|=3,|b→|=4,|c→|=7, find the angle between aa→ and bb→ - Mathematics

Advertisements
Advertisements

प्रश्न

If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`

बेरीज

उत्तर

`vec"a" + 2vec"b" + vec"c"` = 0

 `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`

`vec"a" + 2vec"b" = -vec"c"`

Squaring on both sides,

`(vec"a" + 2vec"b")^2 = (- vec"c")^2`

`vec"a"^2 + 4vec"b"^2 + 2vec"a" * 2vec"b" = vec"c"^2`

`|vec"a"|^2 + 4|vec"b"|^2 + 4vec"a" * vec"b" = |vec"c"|^2`

`3^2 + 4 xx 4^2 + 4 |vec"a"||vec"b"| cos theta = 7^2`

`9 + 64 + 4 xx 3 xx 4 cos theta` = 49

48 cos θ = 49 – 73

48 cos θ = – 24

cos θ = `- 24/48`

cos θ = `- 1/2`

cos θ = = `- cos  pi/3`

cos θ = `cos(pi - pi/3)`

= `cos((3pi- pi)/3)`

cos θ = `cos  ((2pi)/3)`

θ = `(2pi)/3`

shaalaa.com
Product of Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.3 [पृष्ठ ७४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.3 | Q 5 | पृष्ठ ७४

संबंधित प्रश्‍न

Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle


If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`


Find the value λ for which the vectors `vec"a"` and  `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`


Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal


Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle


Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)


Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`


Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product


Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to


Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×