Advertisements
Advertisements
प्रश्न
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
उत्तर
Let `vec"a" = "a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k"`
`vec"a" xx hat"i" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"i"`
= `"a"_1 hat"i" xx hat"i" + "a"_2hat"j" xx hat"i" + "a"_3hat"k" xx hat"i"`
= `"a"_1 xx 0 - "a"_2hat"k" + "a"_3hat"j"`
`vec"a" xx hat"i" = "a"_3hat"j" - "a"_2 hat"k"`
`|vec"a" xx hat"i"| = sqrt("a"_3^2 + (- "a"_2)^2`
`|vec"a" xx hat"i"|^2 = "a"_3^2 + "a"_2^2` .......(1)
`vec"a" xx hat"j" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"j"`
= `"a"_1 hat"i" xx hat"j" + "a"_2 hat"j" xx hat"j" + "a"_3 hat"k" xx hat"j"`
= `"a"_1 hat"k" + "a"_2 xx 0 - "a"_3 hat"i"`
`vec"a" xx hat"j" = "a"_1 hat"k" - "a"_3 hat"i"`
`|vec"a" xx hat"j"| = sqrt("a"_1^2 + (- "a"_3)^2`
`|vec"a" xx hat"j"|^2 = "a"_1^2 + "a"_3^2` ........(2)
`vec"a" xx vec"k" = ("a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k") xx hat"k"`
= `"a"_1 hat"i" xx hat"k" + "a"_2 hat"j" xx hat"k" + "a"_3 hat"k" xx hat"k"`
= `"a"_1 (- hat"j") + "a"_2 hat"i" + 0`
`vec"a" xx hat"k" = "a"_2 hat"i" - "a"_1 hat"j"`
`|vec"a" xx hat"k"| = sqrt("a"_2^2 + (- "a"_1)^2`
`|vec"a" xx hat"k"|^2 = "a"_2^2 + "a"_1^2` .......(3)
Equation (1) + (2) + (3) ⇒
`|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2`
= `"a"_3^2 + "a"_2^2 + "a"_1^2 + "a"_3^2 + "a"_2^2 + "a"_1^2`
= `2("a"_1^2 + "a"_2^2 + "a"_3^2)` .......(4)
`|vec"a"| = |"a"_1 hat"i" + "a"_2 hat"j" + "a"_3 hat"k"|`
`|vec"a"| = sqrt("a"_1^2 + "a"_2^2 + "a"_3^2)`
`|vec"a"| = "a"_1^2 + "a"_2^2 + "a"_3^2` .......(5)
From equation (4) and (5)
`|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
APPEARS IN
संबंधित प्रश्न
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
A vector `vec"OP"` makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between `vec"OP"` and the z-axis is
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is