हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Let abca→,b→,c→ be unit vectors such that abaca→⋅b→=a→⋅c→ = 0 and the angle between bb→ and cc→ is π3. Prove that abca→=± 23(b→×c→) - Mathematics

Advertisements
Advertisements

प्रश्न

Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`

योग

उत्तर

Given `vec"a", vec"b", vec"c"` are unit vectors.

∴ `|vec"a"|` = 1

`|vec"b"|` = 1

`|vec"c"|` = 1

Also `vec"a" * vec"b"` = 0, `vec"a" * vec"c"` = 0

Angle between `vec"b"` and `vec"c" = pi/3`

`vec"a" * vec"b"` = 0

⇒ `vec"a"` ⊥r `vec"b"`

`vec"a" * vec"c"` = 0

⇒ `vec"a"` ⊥r `vec"c"`

∴ `vec"a"` is perpendicular to both `vec"b"` and `vec"c"`

`vec"b" xx vec"c" = |vec"b"||vec"c"| sin  pi/3 hat"n"`

When `hat"n"` is a unit vector perpendicular to both `vec"b"` and `vec"c"` which is `vec"a"`.

`vec"b" xx vec"c" = 1 xx 1 xx sqrt(3)/2 xx hat"n"`

`+-  2/sqrt(3) (vec"b" xx vec"c") = +-  2/sqrt(3) xx sqrt(3)/2 xx hat"n"`

`+-  2/sqrt(3) (vec"b" xx vec"c") =  +- hat"n"`  .......(1)

`+-  hat"n"` is a unit vector perpendicular to both `vec"b"` and `vec"c"` which is `vec"a"`

(1) ⇒ `+-  2/sqrt(3) (vec"b" xx vec"c") = vec"a"`

`vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`

shaalaa.com
Product of Vectors
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Vector Algebra - Exercise 8.4 [पृष्ठ ८०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Vector Algebra
Exercise 8.4 | Q 9 | पृष्ठ ८०

संबंधित प्रश्न

Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle


Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`tan  theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`


Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


Find the area of the parallelogram whose two adjacent sides are determined by the vectors  `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`


Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If the projection of `5hat"i" -  hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" -  hat"j" - 3hat"k"`, then λ is equal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×