हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the angle between the vectors iji^-j^ and jkj^-k^ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`

योग

उत्तर

Let θ be the angle between the given vectors, then

cos θ = `((hat"i" - hat"j") (hat"j" - hat"k"))/(|hat"i" - hat"j"| |hat"j" - hat"k"|)`

= `((hat"i" - hat"j" + 0hat"k")(0hat"i" + hat"j" - hat"k"))/(|hat"i" - hat"j"| |hat"j" - hat"k"|)`

= `((1)(0) + (-1)(1) + (0)(-1))/(sqrt(1^2 + (-1)^2 + 0^2) sqrt(0^2 + (1)^2 + (-1)^2`

= `(0 - 1 + 0)/(sqrt(1 + 1 - 0) sqrt(0 + 1 + 1)`

= `(-1)/(sqrt(2)*sqrt(2)`

cos θ = `-1/2`

cos θ = `- cos(pi/3) = cos(pi - pi/3)`

cos θ = `cos((3pi - pi)/3) = cos  (2pi)/3`

 θ = `(2pi)/3`

shaalaa.com
Product of Vectors
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Vector Algebra - Exercise 8.3 [पृष्ठ ७४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Vector Algebra
Exercise 8.3 | Q 4. (ii) | पृष्ठ ७४

संबंधित प्रश्न

Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle


If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`


Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`cos  theta/2 = 1/2|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`


For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`


Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is


Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×