Advertisements
Advertisements
प्रश्न
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
उत्तर
Let the given points be A(2, –1, 3), B(4, 3, 1) and C(3, 1, 2)
`vec"OA" = 2hat"i" - hat"j" + 3hat"k"`
`vec"OB" = 4hat"i" + 3hat"j" + hat"k"`
`vec"OC" = 3hat"i" + hat"j" + 2hat"k"`
`vec"AB" = vec"OB" - vec"OA"`
= `(4hat"i" + 3hat"j" + hat"k") - (2hat"i" - hat"j" + 3hat"k")`
= `4hat"i" + 3hat"j" + hat"k" - 2hat"i" + hat"j" - 3hat"k"`
`vec"AB" = 2hat"i" + 4hat"j" - 2hat"k"|`
`|vec"AB"| = |2hat"i" + 4hat"j" - 2hat"k"|`
= `sqrt(2^2 + 4^2 + (-2)^2`
= `sqrt(4 +16 + 4)`
= `sqrt(24)`
AB = `sqrt(6 xx 4)`
= `2sqrt(6)`
`vec"BC" = vec"OC" - vec"OB"`
= `(3hat"i" + hat"j" + 2hat"k") - (4hat"i" + 3hat"j" + hat"k")`
= `3hat"i" + hat"j" + 2hat"k" - 4hat"i" - 3hat"j" - hat"k"`
`vec"BC" = -hat"i" - 2hat"j" + hat"k"`
`|vec"BC"| = |-hat"i" - 2hat"j" + hat"k"|`
= `sqrt((-1)^2 + (-2)^2 + 1^2)`
BC = `sqrt(1 + 4 + 1)`
= `sqrt(6)`
`vec"CA" = vec"OC" - vec"OA"`
= `(3hat"i" + hat"j" + 2hat"k") - (2hat"i" + hat"j" + 3hat"k")`
= `3hat"i" + hat"j" + 2hat"k" - 2hat"i" - hat"j" - 3"k"`
`vec"BC" = -hat"i" - 2hat"j" + hat"k"`
`vec"CA" = |hat"i" + 2hat"j" - hat"k"|`
= `sqrt(1^2 + 2^2 + (-1)^2`
CA = `sqrt(1 + 4 + 1)`
= `sqrt(6)`
AB = `2sqrt(6)`, BC = `sqrt(6)`, CA = `sqrt(6)`
BC + CA =`sqrt(6) + sqrt(6) = 2sqrt(6)`
∴ BC + CA = BA = `2sqrt(6)`
Hence the given points A, B, C are collinear.
APPEARS IN
संबंधित प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
If `vec"a"` and `vec"b"` are two vectors such that `|vec"a"| = 10, |vec"b"| = 15` and `vec"a"*vec"b" = 75sqrt(2)`, find the angle between `vec"a"` and `vec"b"`
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
Find the angle between the vectors
`hat"i" - hat"j"` and `hat"j" - hat"k"`
Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the area of the parallelogram whose two adjacent sides are determined by the vectors `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is
Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
If the projection of `5hat"i" - hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" - hat"j" - 3hat"k"`, then λ is equal to
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to