Advertisements
Advertisements
प्रश्न
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
उत्तर
The given vectors are `vec"a" = lambdahat"i" + hat"j" + 4hat"k"`, `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"`
Also given that projection of a⃗ and b⃗ is 4 units.
`(vec"a" * vec"b")/|vec"b"|` = 4
`((lambdahat"i" + hat"j" + 4hat"k")*(2hat"i" + 6hat"j" + 3hat"k"))/|2hat"i" + 6hat"j" + 3hat"k"|` = 4
`((lambda)(2) + (1)(6) + (4)(3))/sqrt(2^2 + 6^2 + 3^2)` = 4
`(2lambda + 6 + 12)/sqrt(4 + 36 + 9)` = 4
`(2lambda + 18)/sqrt(49)` = 4
2λ + 18 = 4 × 7
2λ = 28 – 18
2λ = 10
⇒ λ = 5
APPEARS IN
संबंधित प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`
Find the area of the parallelogram whose two adjacent sides are determined by the vectors `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is