मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find λ, when the projection of aijka→=λi^+j^+4k^ on bijkb→=2i^+6j^+3k^ is 4 units - Mathematics

Advertisements
Advertisements

प्रश्न

Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units

बेरीज

उत्तर

The given vectors are `vec"a" = lambdahat"i" + hat"j" + 4hat"k"`, `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"`

Also given that projection of a⃗  and b⃗  is 4 units.

`(vec"a" * vec"b")/|vec"b"|` = 4

`((lambdahat"i" + hat"j" + 4hat"k")*(2hat"i" + 6hat"j" + 3hat"k"))/|2hat"i" + 6hat"j" + 3hat"k"|` = 4

`((lambda)(2) + (1)(6) + (4)(3))/sqrt(2^2 + 6^2 + 3^2)` = 4

`(2lambda + 6 + 12)/sqrt(4 + 36 + 9)` = 4

`(2lambda + 18)/sqrt(49)` = 4

2λ + 18 = 4 × 7

2λ = 28 – 18

2λ = 10

⇒ λ = 5

shaalaa.com
Product of Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.3 [पृष्ठ ७४]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.3 | Q 13 | पृष्ठ ७४

संबंधित प्रश्‍न

If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`sin  theta/2 = 1/2|vec"a" - vec"b"|`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`cos  theta/2 = 1/2|vec"a" + vec"b"|`


Find the value λ for which the vectors `vec"a"` and  `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)


For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`


Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×