मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the vectors of magnitude 103 that are perpendicular to the plane which contains ijki^+2j^+k^ and ijki^+3j^+4k^ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`

बेरीज

उत्तर

Let the given vectors be `vec"a" = hat"i" +  2hat"j" + hat"k"`

`vec"b" = hat"i" + 3hat"j" + 4hat"k"`

`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, 2, 1),(1, 3, 4)|`

= `hat"i"(8 - 3) - hat"j"(4 - 1) + hat"k"(3 - 2)`

`vec"a" xx vec"b" = 5hat"i" - 3hat"j" + hat"k"`

`|vec"a" xx vec"b"| = |5hat"i" - 3hat"j" + hat"k"|`

= `sqrt(5^2 + (-3)^2 + 1^2)`

`|vec"a" xx vec"b"| = sqrt(25 + 9 + 1)`

= `sqrt(35)`

The unit vector perpendicular to both `vec"a"` and `vec"b"`

= `+-  (vec"a" xx vec"b")/|vec"a" xx vec"b"|`

= `+-  (5hat"i" - 3hat"j" + hat"k")/sqrt(35)`

∴ The vector of magnitude `10sqrt(3)` perpendicular to `vec"a"` and `vec"b"`

= `+-  10sqrt(3) ((5hat"i" -  3hat"j" + hat"k")/sqrt(35))` 

shaalaa.com
Product of Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.4 [पृष्ठ ७९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.4 | Q 3 | पृष्ठ ७९

संबंधित प्रश्‍न

Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`tan  theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`


Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units


Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`


Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)


Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If the projection of `5hat"i" -  hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" -  hat"j" - 3hat"k"`, then λ is equal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×