Advertisements
Advertisements
Question
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Solution
Let the given vectors be `vec"a" = hat"i" + 2hat"j" + hat"k"`
`vec"b" = hat"i" + 3hat"j" + 4hat"k"`
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, 2, 1),(1, 3, 4)|`
= `hat"i"(8 - 3) - hat"j"(4 - 1) + hat"k"(3 - 2)`
`vec"a" xx vec"b" = 5hat"i" - 3hat"j" + hat"k"`
`|vec"a" xx vec"b"| = |5hat"i" - 3hat"j" + hat"k"|`
= `sqrt(5^2 + (-3)^2 + 1^2)`
`|vec"a" xx vec"b"| = sqrt(25 + 9 + 1)`
= `sqrt(35)`
The unit vector perpendicular to both `vec"a"` and `vec"b"`
= `+- (vec"a" xx vec"b")/|vec"a" xx vec"b"|`
= `+- (5hat"i" - 3hat"j" + hat"k")/sqrt(35)`
∴ The vector of magnitude `10sqrt(3)` perpendicular to `vec"a"` and `vec"b"`
= `+- 10sqrt(3) ((5hat"i" - 3hat"j" + hat"k")/sqrt(35))`
APPEARS IN
RELATED QUESTIONS
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
Find the angle between the vectors
`hat"i" - hat"j"` and `hat"j" - hat"k"`
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is
Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is
Choose the correct alternative:
If the projection of `5hat"i" - hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" - hat"j" - 3hat"k"`, then λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is