Advertisements
Advertisements
Question
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
Solution
Let θ be the angle between the given vectors, then
cos θ = `((2hat"i" + 3hat"j" - 6hat"k") * (6hat"i" - 3hat"j" + 2hat"k"))/(|2hat"i" + 3hat"j" - 6hat"k"| |6hat"i" - 3hat"j" + 2hat"k"|)`
= `((2)(6) + (3)(- 3) + (- 6)(2))/(sqrt(2^2 + 3^2 + (- 6)^2) sqrt(6^2 + (- 3)^2 + 2^2)`
= `(12 - 9 - 12)/(sqrt(4 + 9 + 36) sqrt(36 + 9 + 4)``
= `(- 9)/(sqrt(49) * sqrt(49)`
= `( - 9)/49`
θ = `cos^-1 ((-9)/49)`
APPEARS IN
RELATED QUESTIONS
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are
Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is