Advertisements
Advertisements
Question
If `vec"a"` and `vec"b"` are two vectors such that `|vec"a"| = 10, |vec"b"| = 15` and `vec"a"*vec"b" = 75sqrt(2)`, find the angle between `vec"a"` and `vec"b"`
Solution
Given `|vec"a"| = 10, |vec"b"| = 15` and `vec"a"*vec"b" = 75sqrt(2)`
Let θ be the angle between `vec"a"` and `vec"b"`
cos θ = `(vec"a"*vec"b")/(|vec"a"| * |vec"b"|)`
= `(75sqrt(2))/(10 xx 15)`
= `sqrt(2)/2`
cos θ = `1/sqrt(2)`
cos θ = `(15 xx 5 xx sqrt(2))/(10 xx 15)`
cos θ = `sqrt(2)/(sqrt(2) xx sqrt(2))`
= `1/sqrt(2)`
θ = 45°
= `pi/4`
APPEARS IN
RELATED QUESTIONS
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`sin theta/2 = 1/2|vec"a" - vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
Find the angle between the vectors
`hat"i" - hat"j"` and `hat"j" - hat"k"`
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is
Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to
Choose the correct alternative:
If the projection of `5hat"i" - hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" - hat"j" - 3hat"k"`, then λ is equal to
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is