English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Find the angle between the vectors ijk2i^+j^-k^ and ijki^+2j^+k^ using vector product - Mathematics

Advertisements
Advertisements

Question

Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product

Sum

Solution

Let the given vector be `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"`

`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, 1, -1),(1, 2, 1)|`

= `hat"i"(1 + 2) - hat"j"(2 + 1) + hat"k"(4 - 1)`

`vec"a" xx vec"b" = 3hat"i" - 3hat"j" + 3hat"k"`

`|vec"a" xx vec"b"| = |3hat"i" - 3hat"j" + 3hat"k"|`

= `sqrt(3^2 + (- 3)^2 + 3^2`

= `sqrt(3 xx 3^2)`

= `3sqrt(3)`

`|vec"a"| = |2hat"i" + hat"j" - hat"k"|`

= `sqrt(2^2 + 1^2 + (- 1)^2`

= `sqrt(4 + 1 + 1)`

= `sqrt(6)`

`|vec"b"| = |hat"i" + 2hat"j" - hat"k"|`

= `sqrt(1^2 + 2^2 + 1^2)`

= `sqrt(1 + 4 + 1)`

= `sqrt(6)`

Let θ  be the angle between `vec"a"` and `vec"b"`

sin θ = `|vec"a" xx vec"b"|/(|vec"a"| |vec"b"|)`

= `(3sqrt(3))/(sqrt(6) * sqrt(6))`

= `(3sqrt(3))/6`

sin θ = `sqrt(3)/2`

∴ θ = `pi/3`

shaalaa.com
Product of Vectors
  Is there an error in this question or solution?
Chapter 8: Vector Algebra - Exercise 8.4 [Page 80]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 8 Vector Algebra
Exercise 8.4 | Q 10 | Page 80

RELATED QUESTIONS

If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`sin  theta/2 = 1/2|vec"a" - vec"b"|`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`tan  theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle


Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


Find the area of the parallelogram whose two adjacent sides are determined by the vectors  `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`


Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)


For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`


Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is


Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If the projection of `5hat"i" -  hat"j" - 3hat"k"` on the vector `hat"i" + 3hat"j" + lambdahat"k"` is same as the projection of `hat"i" + 3hat"j" + lambdahat"k"` on `5hat"i" -  hat"j" - 3hat"k"`, then λ is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×