English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Let abca→,b→,c→ be three vectors such that abc|a→|=3,|b→|=4,|c→|=5 and each one of them being perpendicular to the sum of the other two, find abc|a→+b→+c→| - Mathematics

Advertisements
Advertisements

Question

Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`

Sum

Solution

Given `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5`

Also `vec"a" * (vec"b" + vec"c")` = 0,

`vec"b" * (vec"c" + vec"a")` = 0

`vec"c" * (vec"a" + vec"b")` = 0

`vec"a" * (vec"b" + vec"c")` = 0

`vec"a" * vec"b" + vec"a" * vec"c"` = 0   ........(1)

`vec"b" * (vec"c" + vec"a")` = 0

`vec"b" * vec"c" + vec"b" * vec"a"` = 0   ........(2)

`vec"c" * (vec"a" + vec"b")` = 0

`vec"c" * vec"a" + vec"c" * vec"b"` = 0   ........(3)

Equation (1) + (2) + (3) ⇒

`vec"a" * vec"b" + vec"a" * vec"c" + vec"b" * vec"c" + vec"b" * vec"a" + vec"c" * vec"a" + vec"c" * vec"b"` = 0

`vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c" + vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c"` = 0

`2vec"a" * vec"b" + 2vec"b" * 2vec"c" * vec"a"` = 0

`2(vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a")` = 0

`(vec"a" + vec"b" + vec"c")^2 = vec"a"^2 + vec"b"^2 + vec"c"^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"`

`|vec"a" + vec"b" + vec"c"|^2 = |vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")`

= `3^2 + 4^2 + 5^2 + 0`

= 9 + 16 + 25

= 25 + 25

`|vec"a" + vec"b" + vec"c"|^2` = 50

`|vec"a" + vec"b" + vec"c"| = sqrt(2 xx 25) = sqrt(50)`

`|vec"a" + vec"b" + vec"c"| = 5sqrt(2)`

shaalaa.com
Product of Vectors
  Is there an error in this question or solution?
Chapter 8: Vector Algebra - Exercise 8.3 [Page 74]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 8 Vector Algebra
Exercise 8.3 | Q 11 | Page 74

RELATED QUESTIONS

Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle


Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`tan  theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal


Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units


Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`


If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C


For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`


Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`


Choose the correct alternative:
If `lambdahat"i" + 2lambdahat"j" + 2lambdahat"k"` is a unit vector, then the value of `lambda` is


Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is


Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×