Advertisements
Advertisements
प्रश्न
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
उत्तर
Given `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5`
Also `vec"a" * (vec"b" + vec"c")` = 0,
`vec"b" * (vec"c" + vec"a")` = 0
`vec"c" * (vec"a" + vec"b")` = 0
`vec"a" * (vec"b" + vec"c")` = 0
`vec"a" * vec"b" + vec"a" * vec"c"` = 0 ........(1)
`vec"b" * (vec"c" + vec"a")` = 0
`vec"b" * vec"c" + vec"b" * vec"a"` = 0 ........(2)
`vec"c" * (vec"a" + vec"b")` = 0
`vec"c" * vec"a" + vec"c" * vec"b"` = 0 ........(3)
Equation (1) + (2) + (3) ⇒
`vec"a" * vec"b" + vec"a" * vec"c" + vec"b" * vec"c" + vec"b" * vec"a" + vec"c" * vec"a" + vec"c" * vec"b"` = 0
`vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c" + vec"a" * vec"b" + vec"c" * vec"a" + vec"b" * vec"c"` = 0
`2vec"a" * vec"b" + 2vec"b" * 2vec"c" * vec"a"` = 0
`2(vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a")` = 0
`(vec"a" + vec"b" + vec"c")^2 = vec"a"^2 + vec"b"^2 + vec"c"^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"`
`|vec"a" + vec"b" + vec"c"|^2 = |vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")`
= `3^2 + 4^2 + 5^2 + 0`
= 9 + 16 + 25
= 25 + 25
`|vec"a" + vec"b" + vec"c"|^2` = 50
`|vec"a" + vec"b" + vec"c"| = sqrt(2 xx 25) = sqrt(50)`
`|vec"a" + vec"b" + vec"c"| = 5sqrt(2)`
APPEARS IN
संबंधित प्रश्न
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
If `vec"a"` and `vec"b"` are two vectors such that `|vec"a"| = 10, |vec"b"| = 15` and `vec"a"*vec"b" = 75sqrt(2)`, find the angle between `vec"a"` and `vec"b"`
Find the angle between the vectors
`hat"i" - hat"j"` and `hat"j" - hat"k"`
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
Find the area of the parallelogram whose two adjacent sides are determined by the vectors `hat"i" + 2hat"j" + 3hat"k"` and `3hat"i" - 2hat"j" + hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
A vector `vec"OP"` makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between `vec"OP"` and the z-axis is
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are
Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to
Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is