Advertisements
Advertisements
प्रश्न
Find the vectors of magnitude `10sqrt(3)` that are perpendicular to the plane which contains `hat"i" + 2hat"j" + hat"k"` and `hat"i" + 3hat"j" + 4hat"k"`
उत्तर
Let the given vectors be `vec"a" = hat"i" + 2hat"j" + hat"k"`
`vec"b" = hat"i" + 3hat"j" + 4hat"k"`
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, 2, 1),(1, 3, 4)|`
= `hat"i"(8 - 3) - hat"j"(4 - 1) + hat"k"(3 - 2)`
`vec"a" xx vec"b" = 5hat"i" - 3hat"j" + hat"k"`
`|vec"a" xx vec"b"| = |5hat"i" - 3hat"j" + hat"k"|`
= `sqrt(5^2 + (-3)^2 + 1^2)`
`|vec"a" xx vec"b"| = sqrt(25 + 9 + 1)`
= `sqrt(35)`
The unit vector perpendicular to both `vec"a"` and `vec"b"`
= `+- (vec"a" xx vec"b")/|vec"a" xx vec"b"|`
= `+- (5hat"i" - 3hat"j" + hat"k")/sqrt(35)`
∴ The vector of magnitude `10sqrt(3)` perpendicular to `vec"a"` and `vec"b"`
= `+- 10sqrt(3) ((5hat"i" - 3hat"j" + hat"k")/sqrt(35))`
APPEARS IN
संबंधित प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`sin theta/2 = 1/2|vec"a" - vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`
Show that the vectors `vec"a" = 2hat"i" + 3hat"j" + 3hat"j" + 6hat"k", vec"b" = 6hat"i" + 2hat"j" - 3hat"k"` and `vec"c" = 3hat"i" - 6hat"j" + 6hat"k"` are mutually orthogonal
Show that the vectors `-hat"i" - 2hat"j" - 6hat"k", 2hat"i" - hat"j" + hat"k"` and find `-hat"i" + 3hat"j" + 5hat"k"` form a right angled triangle
Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units
Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are
Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is
Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to
Choose the correct alternative:
If `vec"a"` and `vec"b"` are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between `vec"a"` and `vec"a" + vec"b"` is