Advertisements
Advertisements
प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
उत्तर
Let the given vectors be `vec"AB" = 2hat"i" - hat"j" + hat"k"`
`vec"BC" = 3hat"i" - 4hat"j" - 4hat"k"` and `vec"AC" = hat"i" - 3hat"j" - hat"k"`
`|vec"AB"| = |2hat"i" - hat"j" + hat"k"|`
AB = `sqrt(2^2 + (-1)^2 + 1^2)`
= `sqrt(4 + 1 + 1)`
AB = `sqrt(6)`
`|vec"BC"| = |3hat"i" - 4hat"j" - 4hat"k"|`
BC = `sqrt(3^2 + (-4)^2 + (-4)^2`
= `sqrt(9 + 16 + 16)`
BC = `sqrt(41)`
`|vec"AC"| = |hat"i" - 3hat"j" - 5hat"k"|`
AC = `sqrt(1^2 + (-3)^2 + (-5)^2`
= `sqrt(1 +9 + 25)`
AC = `sqrt(35)`
AB2 + AC2 = 6 + 35 = 41 .......(1)
BC2 = 41 .......(2)
From equation (1) and (2), we get
AB2 + AC2 = BC2
∴ The given vectors from right anled triange.
APPEARS IN
संबंधित प्रश्न
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Show that the points (2, –1, 3), (4, 3, 1) and (3, 1, 2) are collinear
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`cos theta/2 = 1/2|vec"a" + vec"b"|`
If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that
`tan theta/2 = |vec"a" - vec"b"|/|vec"a" + vec"b"|`
Find `vec"a"*vec"b"` when `vec"a" = 2hat"i" + 2hat"j" - hat"k"` and `vec"b" = 6hat"i" - 3hat"j" + 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" - 2hat"j" + 3hat"k"`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Find the angle between the vectors `2hat"i" + hat"j" - hat"k"` and `hat"i" + 2hat"j" + hat"k"` using vector product
Choose the correct alternative:
A vector `vec"OP"` makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between `vec"OP"` and the z-axis is
Choose the correct alternative:
If `|vec"a" + vec"b"| = 60, |vec"a" - vec"b"| = 40` and `|vec"b"| = 46`, then `|vec"a"|` is
Choose the correct alternative:
The value of θ ∈ `(0, pi/2)` for which the vectors `"a" = (sin theta)hat"i" = (cos theta)hat"j"` and `vec"b" = hat"i" - sqrt(3)hat"j" + 2hat"k"` are perpendicular, equaal to
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to