हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)

योग

उत्तर

The given vertices of the triangle ABC are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)

`vec"OA" = 3hat"i" - hat"j" + 2hat"k"`

`vec"OB" = hat"i" - hat"j" - 3hat"k"`

`vec"OC" = 4hat"i" - 3hat"j" + hat"k"`

`vec"AB" = vec"OB" - vec"OA"`

= `(hat"i" - hat"j" - 3hat"k") - (3hat"i" - hat"j" + 2hat"k")`

= `hat"i" - hat"j" - 3hat"k" - 3hat"i" + hat"j" - 2hat"k"`

`vec"AB" = -2hat"i" - 5hat"k"`

`vec"AC" = vec"OC" - vec"OA"`

= `(4hat"i" - 3hat"j" + hat"k") - (3hat"i" - hat"j" + 2hat"k")`

= `4hat"i" - 3hat"j" + hat"k" - 3hat"i" + hat"j" - 2hat"k"`

`vec"AC" = hat"i" - 2hat"j" - hat"k"`

`vec"AB" xx vec"AC" = |(hat"i", hat"j", hat"k"),(-2, 0, -5),(1, -2, -1)|`

= `hat"i"(0 - 10) - hat"j"(2 + 5) + hat"k"(4 - 0)`

= `-10hat"i" - 7hat"j" + 4hat"k"`

`|vec"AB" xx vec"AC"| = |-10hat"i" - 7hat"j" + 4hat"k"|`

= `sqrt((-10)^2 + (-7)^2 + 4^2`

= `sqrt(100 + 49 + 16)`

= `sqrt(165)`

Area of the triangle ABC = `1/2 |vec"AB" xx vec"AC"|`

= `1/2 xx sqrt(165)`

shaalaa.com
Product of Vectors
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Vector Algebra - Exercise 8.4 [पृष्ठ ८०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Vector Algebra
Exercise 8.4 | Q 6 | पृष्ठ ८०

संबंधित प्रश्न

If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`sin  theta/2 = 1/2|vec"a" - vec"b"|`


If `vec"a", vec"b"` are unit vectors and q is the angle between them, show that 

`cos  theta/2 = 1/2|vec"a" + vec"b"|`


Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`


Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`


Find the angle between the vectors

`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`


Find the angle between the vectors

`hat"i" - hat"j"` and `hat"j" - hat"k"`


If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`


Let `vec"a", vec"b", vec"c"` be three vectors such that `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 5` and each one of them being perpendicular to the sum of the other two, find `|vec"a" + vec"b" + vec"c"|`


Find λ, when the projection of `vec"a" = lambdahat"i" + hat"j" + 4hat"k"` on `vec"b" = 2hat"i" + 6hat"j" + 3hat"k"` is 4 units


Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`


Show that `vec"a" xx (vec"b" + vec"c") + vec"b" xx (vec"c" + vec"a") + vec"c" xx (vec"a" + vec"b") = vec0`


Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +-  2/sqrt(3) (vec"b" xx vec"c")`


Choose the correct alternative:
A vector `vec"OP"` makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between `vec"OP"` and the z-axis is


Choose the correct alternative:
The vectors `vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"` are


Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is  


Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to


Choose the correct alternative:
If (1, 2, 4) and (2, – 3λ – 3) are the initial and terminal points of the vector `hat"i" + 5hat"j" - 7hat"k"` then the value of λ is equal to


Choose the correct alternative:
If `vec"a" = hat"i" + 2hat"j" + 2hat"k", |vec"b"|` = 5 and the angle between `vec"a"` and `vec"b"` is `pi/6`, then the area of the triangle formed by these two vectors as two sides, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×