Advertisements
Advertisements
प्रश्न
Find the magnitude of `vec"a" xx vec"b"` if `vec"a" = 2hat"i" + hat"j" + 3hat"k"` and `vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`
उत्तर
The given vectors are `vec"a" = 2hat"i" + hat"j" + 3hat"k"`
`vec"b" = 3hat"i" + 5hat"j" - 2hat"k"`
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, 1, 3),(3, 5, -2)|`
= `hat"i"(- 2 - 15) - hat"j"(- 4 - 9) + hat"k"(10 - 3)`
`vec"a" xx vec"b" = 17hat"i" + 13hat"j" + 7hat"k"`
`|vec"a" xx vec"b"| = |-17hat"i" + 13hat"j" + 7hat"k"|`
= `sqrt((-17)^2 + 13^2 + 7^2)`
`|vec"a" xx vec"b"| = sqrt(289 + 169 + 49)`
= `sqrt(507)`
APPEARS IN
संबंधित प्रश्न
Show that the vectors `- 2hat"i" - hat"j" - hat"k", - 3hat"i" - 4hat"j" - 4hat"k", hat"i" - 3hat"j" - 5hat"k"` form a right angled triangle
If `|vec"a"|= 5, |vec"b"| = 6, |vec"c"| = 7` and `vec"a" + vec"b" + vec"c" = vec"0"`, find `vec"a" * vec"b" + vec"b" *vec"c" + vec"c" * vec"a"`
Find `vec"a"*vec"b"` when `vec"a" = hat"i" - 2hat"j" + hat"k"` and `vec"b" = 3hat"i" - 4hat"j" - 2hat"k"`
Find the value λ for which the vectors `vec"a"` and `vec"b"` are perpendicular, where `vec"a" = 2hat"i" + 4hat"j" - hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + lambdahat"k"`
Find the angle between the vectors
`2hat"i" + 3hat"j" - 6hat"k"` and `6hat"i" - 3hat"j" + 2hat"k"`
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + 2vec"b" + vec"c"` = 0 and `|vec"a"| = 3, |vec"b"| = 4, |vec"c"| = 7`, find the angle between `vec"a"` and `vec"b"`
Find the projection of the vector `hat"i" + 3hat"j" + 7hat"k"` on the vector `2hat"i" + 6hat"j" + 3hat"k"`
Three vectors `vec"a", vec"b"` and `vec"c"` are such that `|vec"a"| = 2, |vec"b"| = 3, |vec"c"| = 4`, and `vec"a" + vec"b" + vec"c" = vec0`. Find `4vec"a"*vec"b" + 3vec"b"*vec"c" + 3vec"c"*vec"a"`
Find the unit vectors perpendicular to each of the vectors `vec"a" + vec"b"` and `vec"a" - vec"b"`, where `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"`
Find the area of the triangle whose vertices are A(3, – 1, 2), B(1, – 1, – 3) and C(4, – 3, 1)
If `vec"a", vec"b", vec"c"` are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is `1/2 |vec"a" xx vec"b" + vec"b" xx vec"c" + vec"c" xx vec"a"|`. Also deduce the condition for collinearity of the points A, B, and C
For any vector `vec"a"` prove that `|vec"a" xx hat"i"|^2 + |vec"a" xx hat"j"|^2 + |vec"a" xx hat"k"|^2 = 2|vec"a"|^2`
Let `vec"a", vec"b", vec"c"` be unit vectors such that `vec"a" * vec"b" = vec"a"*vec"c"` = 0 and the angle between `vec"b"` and `vec"c"` is `pi/3`. Prove that `vec"a" = +- 2/sqrt(3) (vec"b" xx vec"c")`
Choose the correct alternative:
A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
Choose the correct alternative:
If `vec"a"` and `vec"b"` having same magnitude and angle between them is 60° and their scalar product `1/2` is then `|vec"a"|` is
Choose the correct alternative:
If `|vec"a"| = 13, |vec"b"| = 5` and `vec"a" * vec"b"` = 60° then `|vec"a" xx vec"b"|` is
Choose the correct alternative:
Vectors `vec"a"` and `vec"b"` are inclined at an angle θ = 120°. If `vec"a"| = 1, |vec"b"| = 2`, then `[(vec"a" + 3vec"b") xx (3vec"a" - vec"b")]^2` is equal to
Choose the correct alternative:
If `vec"a" = hat"i" + hat"j" + hat"k", vec"b" = 2hat"i" + xhat"j" + hat"k", vec"c" = hat"i" - hat"j" + 4hat"k"` and `vec"a" * (vec"b" xx vec"c")` = 70, then x is equal to