Advertisements
Advertisements
Question
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Solution
\[\text{ Let } \alpha, \beta \text{ and } \gamma \text{ be the angles made by } \vec{n} \text{ with x, y and z-axes, respectively } .\]
\[\text{ It is given that } \]
\[\alpha = \beta = \gamma\]
\[ \Rightarrow \cos\alpha = \cos\beta = \cos\gamma\]
\[ \Rightarrow l = m = n, \text{ where l, m, n are direction cosines of } \vec{n} .\]
\[\text{ But } l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow l^2 + l^2 + l^2 = 1\]
\[ \Rightarrow 3 l^2 = 1\]
\[ \Rightarrow l^2 = \frac{1}{3}\]
\[ \Rightarrow l = \frac{1}{\sqrt{3}}\]
\[\text{ So } ,l = m = n = \frac{1}{\sqrt{3}}\]
\[\text{ It is given that the length of the perpendicular of the plane from the origin, } p= 5\sqrt{3}\]
\[\text{ The normal form of the plane is } lx + my + nz = p\]
\[ \Rightarrow \frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = 5\sqrt{3}\]
\[ \Rightarrow x + y + z = 5\sqrt{3} \left( \sqrt{3} \right) \]
\[ \Rightarrow x + y + z = 15\]
APPEARS IN
RELATED QUESTIONS
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the distance of the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The locus represented by xy + yz = 0 is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,