English

Find the Vector Equation of the Plane Passing Through the Points 3 ^ I + 4 ^ J + 2 ^ K , 2 ^ I − 2 ^ J − ^ K and 7 ^ I + 6 ^ K . - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 
Sum

Solution

\[ \text{ Let } A(3, 4, 2),B(2, -2, -1) \text{ and } C(7, 0, 6) \text{ be the points represented by the given position vectors } .\]
\[\text{ The required plane passes through the point A (3, 4, 2) whose position vector is } \vec{a} =3 \text{i} +4 \hat{j} +2 \hat{k}  \text{ and is normal to the vector } \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC} . \]
\[ \text{ Clearly } , \vec{AB} = \vec{OB} - \vec{OA} = \left( 2 \hat{i}  - 2 \hat{j} - \hat{k} \right) - \left( 3 \hat{i} +4 \hat{j} +2 \hat{k} \right) = - \hat{i}  - 6 \hat{j}  - 3 \hat{k}  \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( 7 \hat{i} + 0 \hat{j}  + 6 \hat{k}  \right) - \left( 3 \hat{i}  +4 \hat{j}  +2 \hat{k}  \right) = 4 \hat{i}  - 4 \hat{j}  + 4 \hat{k}  \]
\[ \vec{n} = \vec{AB} \ ×  \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j}  & \hat{k}  \\ - 1 & - 6 & - 3 \\ 4 & - 4 & 4\end{vmatrix} = - 36 \hat{i}  - 8 \hat{j}  + 28 \hat{k} \]
\[ \text{ The vector equation of the required plane is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( - 36 \hat{i} - 8 \hat{j}  + 28 \hat{k}  \right) = \left( 3 \hat{i}  +4 \hat{j}  +2 \hat{k}  \right) . \left( - 36 \hat{i}   - 8 \hat{j}  + 28 \hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left[ - 4 \left( 9 \hat{i}  + 2 \hat{j} + 7 \hat{k}  \right) \right] = - 108 - 32 + 56\]
\[ \Rightarrow \vec{r} . \left[ - 4 \left( 9 \hat{i}  + 2 \hat{j}  + 7 \hat{k}  \right) \right] = - 84\]
\[ \Rightarrow \vec{r} . \left( 9 \hat{i}  + 2 \hat{j}  + 7 \hat{k}  \right) = 21\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.05 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.05 | Q 5 | Page 23

RELATED QUESTIONS

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×