हिंदी

From a Set of 100 Cards Numbered 1 to 100, One Card is Drawn at Random. the Probability that the Number Obtained on the Card is Divisible by 6 Or 8 but Not by 24 is - Mathematics

Advertisements
Advertisements

प्रश्न

From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is 

विकल्प

  • 6/25

  • 1/4

  •  1/6

  •  2/5

  • None of these

MCQ
योग

उत्तर

Number divisible by 6 between 1 to 100 = 16
Number divisible by 8 between 1 to 100 = 12
Number divisible by 6 and 8 between 1 to 100 = 4
Number divisible by 24 between 1 to 100 = 4

P(number divisible by 6 or 8) = P(number divisible by 6) + P(number divisible by 8) - P(number divisible by 6 and 8)

\[= \frac{16}{100} + \frac{12}{100} - \frac{4}{100}\]

\[ = \frac{24}{100}\]

\[ = \frac{6}{25}\]

P(number divisible by 6 or 8 but not by 24) = P(number divisible by 6 or 8) - P(number divisible by 24)

\[= \frac{6}{25} - \frac{4}{100}\]

\[ = \frac{6}{25} - \frac{1}{25}\]

\[ = \frac{5}{25}\]

\[ = \frac{1}{5}\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - MCQ [पृष्ठ १०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
MCQ | Q 26 | पृष्ठ १०५

संबंधित प्रश्न

Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


If A and are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).

 

If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and }  P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and }  P\left( \overline{ A }|\overline{ B } \right) .\]


Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .


If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).

 

A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


If A and B are two events, then P (`overline A` ∩ B) =


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`  respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
 

 
 

The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4  heads. 


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×