हिंदी

A Card is Drawn from a Pack of 52 Cards So the Teach Card is Equally Likely to Be Selected. in Which of the Following Cases Are the Events a and B Independent?B = the Card Drawn is a Spade. - Mathematics

Advertisements
Advertisements

प्रश्न

A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.

योग

उत्तर

\[P\left( \text{ spade }\right) = P\left( A \right) = \frac{13}{52} = \frac{1}{4}\]
\[P\left( \text{ ace }  \right) = P\left( B \right) = \frac{4}{52} = \frac{1}{13}\]
\[P\left( A \cap B \right) = P\left( \text{ ace of spade } \right) = \frac{1}{52}\]
\[P\left( A \cap B \right) = P\left( A \right) P\left( B \right)\]
\[\text{ Thus, A and B are independent events } .\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.4 | Q 3.3 | पृष्ठ ५४

संबंधित प्रश्न

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.


A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.


 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


If A and B are two independent events such that P (`bar A`  ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).

 
 

A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.


The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:  `1 - (1 - p_1 )(1 -p_2 ) `


A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.


A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?


In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


Three machines E1E2E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines Eand E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

If ABC are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


If A and B are two events, then P (`overline A` ∩ B) =


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is


Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×