हिंदी

Mark the Correct Alternative in the Following Question:A Flash Light Has 8 Batteries Out of Which 3 Are Dead. If Two Batteries Are Selected Without Replacement and Tested - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is

विकल्प

  • \[ \frac{3}{28}\]

  • \[ \frac{1}{14}\]

  • \[\frac{9}{64} \]

  • \[\frac{33}{56}\]

MCQ

उत्तर

\[\text{ We have } , \]

\[\text{ The total number of batteries } = 8\]

\[\text{ The number of dead batteries }= 3\]

\[\text{ Let A be the event of selecting the first dead battery and } \]

\[\text{ B be the event of selecting the second dead battery } \]

\[\text{ Now } , \]

\[P\left( \text{ both dead batteries are selected } \right) = P\left( A \cap B \right)\]

\[ = P\left( A \right) \times P\left( B|A \right)\]

\[ = \frac{3}{8} \times \frac{2}{7}\]

\[ = \frac{3}{28}\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - MCQ [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
MCQ | Q 44 | पृष्ठ १०७

संबंधित प्रश्न

A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32

 

Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]


If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and }  P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and }  P\left( \overline{ A }|\overline{ B } \right) .\]


In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability that the cards drawn are king, queen and jack.


The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:  `1 - (1 - p_1 )(1 -p_2 ) `


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

AB, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.


The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.


A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.


A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.


A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) =  \[\frac{5}{9}\], then find the value of p.


If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is


A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is


Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is


Mark the correct alternative in the following question:

\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]


If A and B are two events such that A ≠ Φ, B = Φ, then 


A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.


An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×