Advertisements
Advertisements
प्रश्न
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.
उत्तर
\[\text{ Given : Box } = \left( 10B + 8R \right) \text{ balls } \]
\[ P\left( \text{ one is red and one is black } \right) = P\left( \text{ first red and second black } \right) + P\left( \text{ first red and second black } \right)\]
\[ = \frac{8}{'18} \times \frac{10}{18} + \frac{10}{18} \times \frac{8}{18}\]
\[ = \frac{80}{324} + \frac{80}{324}\]
\[ = \frac{40}{81}\]
APPEARS IN
संबंधित प्रश्न
A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.
Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.
A die is rolled. If the outcome is an odd number, what is the probability that it is prime?
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = the card drawn is black, B = the card drawn is a king.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: `1 - (1 - p_1 )(1 -p_2 ) `
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
Three persons A, B, C throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.
In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
The probability that a leap year will have 53 Fridays or 53 Saturdays is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
If A and B are two events, then P (`overline A` ∩ B) =
Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is
Mark the correct alternative in the following question:
\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.