Advertisements
Advertisements
प्रश्न
Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is
विकल्प
\[ \frac{1}{2} \]
\[\frac{1}{3}\]
\[\frac{2}{3} \]
\[\frac{4}{7}\]
उत्तर
\[\text{ We have } , \]
\[S = \left\{ BBB, BBG, BGB, BGG, GGG, GBG, GGB, GBB \right\}, \text{ where the first letter in each element represents the eldest child } \]
\[\text{ Let} : \]
\[\text{ A be the event of choosing a family with a girl as the eldest child and } \]
\[ \text{ B be the event of choosing a family with at least one girl child } \]
\[\text{ So } , A = \left\{ GGG, GBG, GGB, GBB \right\} \text{ and } B = \left\{ BBG, BGB, BGG, GGG, GBG, GGB, GBB \right\}\]
\[ \Rightarrow n\left( A \right) = 4, n\left( B \right) = 7 \text{ and } n\left( A \cap B \right) = n\left( A \right) = 4\]
\[\text{ Now} , \]
\[P\left( A|B \right) = \frac{n\left( A \cap B \right)}{n\left( B \right)} = \frac{4}{7}\]
APPEARS IN
संबंधित प्रश्न
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins
Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.
A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.
If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: `1 - (1 - p_1 )(1 -p_2 ) `
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.
A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.
Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?
Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.
A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).
If A, B and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of A, B and C.
Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then } P\left( A|B \right) \text{ is equal to} \]
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].
Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).
A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.