हिंदी

Tickets Are Numbered from 1 to 10. Two Tickets Are Drawn One After the Other at Random. Find the Probability that the Number on One of the Tickets is a Multiple of 5 and on the Other a Multiple of 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.

 

उत्तर

\[ \text{ We know that 5 and 10 aremultiples of 5, while 4 and 8 are multiples of 4 } .\]

\[P\left( \text { multiple of 5 }\right) = \frac{2}{10} = \frac{1}{5}\]

\[P\left( \text{ multiple of 4 } \right) = \frac{2}{10} = \frac{1}{5}\]

\[P\left( \text{ multiple of 5 and multiple of 4 } \right) = P\left( \text{ multiple of 5 on first card and multiple of 4 on second card }  \right)\]

\[ + P\left( \text{ multiple of 4 on first card and multiple of 5 on second card } \right)\]

\[ = \frac{2}{10} \times \frac{2}{9} + \frac{2}{10} \times \frac{2}{9} \left[ \text{ Without replacement }  \right]\]

\[ = \frac{4}{90} + \frac{4}{90}\]

\[ = \frac{8}{90}\]

\[ = \frac{4}{45}\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.5 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.5 | Q 12 | पृष्ठ ६९

संबंधित प्रश्न

A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.


Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).

 

From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).

 

A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.


A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\]  and P (A/B) =  \[\frac{2}{5},\]  find P (A ∪ B).


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


AB, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?


A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.


An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?


One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.

 

Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) = 


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`  respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
 

 
 

Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A|B \right) = p, P\left( A \right) = p, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cup B \right) = \frac{5}{9}, \text{ then} p = \]


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is 


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×