Advertisements
Advertisements
प्रश्न
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
उत्तर
\[\text{ Given } : \]
\[\text{ A and B are independent events. } \]
\[P\left( A \right) = 0 . 3\]
\[P\left( B \right) = 0 . 6\]
\[ P\left( \bar{A} \cap B \right) = P\left( \bar{A} \right) P\left( B \right)\]
\[ = P\left( B \right)\left[ 1 - P\left( A \right) \right]\]
\[ = 0 . 6 \times 0 . 7\]
\[ = 0 . 42\]
APPEARS IN
संबंधित प्रश्न
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.
An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.
Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
If A, B and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of A, B and C.
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is
A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A|B \right) = p, P\left( A \right) = p, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cup B \right) = \frac{5}{9}, \text{ then} p = \]
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.