हिंदी

A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins - Mathematics

Advertisements
Advertisements

प्रश्न

A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins

उत्तर

 Total of 7 on the dice can be obtained in the following ways:

(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)

Probability of getting a total of 7 = `6/36=1/6`

Probability of not getting a total of 7 = `1-1/6=5/6`

Total of 10 on the dice can be obtained in the following ways:

(4, 6), (6, 4), (5, 5)

Probability of getting a total of 10 = `3/36=1/12`

Probability of not getting a total of 10 = `1-1/12=11/12`

Let E and F be the two events, defined as follows:

E = Getting a total of 7 in a single throw of a dice

F = Getting a total of 10 in a single throw of a dice

`P(E)=1/6, P(barE)=5/6P(F)=1/12, P(barF)=11/12`

A wins if he gets a total of 7 in 1st, 3rd or 5th ... throws

Probability of A getting a total of 7 in the 1st throw = `1/6`

A will get the 3rd throw if he fails in the 1st throw and B fails in the 2nd throw.

Probability of A getting a total of 7 in the 3rd throw = `P(barE)P(barF)P(barE)=5/6xx11/12xx1/6`

Similarly, probability of getting a total of 7 in the 5th throw =  `P(barE)P(barF)P(barE)P(barF)P(E)=5/6xx11/12xx5/6xx11/12xx1/6 " an so on"`

Probability of winning of A =  `1/6+(5/6xx11/12xx1/6)+(5/6xx11/12xx5/6xx11/12xx1/6)+...=(1/6)/(1-5/6xx11/12)=12/17`

∴ Probability of winning of B = 1 − Probability of winning of A =`1-12/17=5/17`

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Delhi Set 1

संबंधित प्रश्न

A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.


A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.


If A and are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).

 

If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).

 

A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Two dice are thrown together and the total score is noted. The event EF and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.   


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.


Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


AB, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?


A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.


There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


If AB and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of AB and C.


A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


Choose the correct alternative in the following question:

\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and }  P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]


Mark the correct alternative in the following question:

\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]


A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4`  respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
 

 
 

An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×