Advertisements
Advertisements
प्रश्न
A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.
उत्तर
Consider the given events.
A = Heads on third toss
B = Heads on first two tosses
Clearly,
A = {(H, H, H), (H, T, H), (T, H, H), (T, T, H)}
B = {(H, H, H), (H, H, T)
\[\text{ Now } , \]
\[A \cap B = \left\{ H, H, H \right\}\]
\[ \therefore \text{ Required probability} = P\left( A/B \right) = \frac{n\left( A \cap B \right)}{n\left( B \right)} = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).
A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.
A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.
Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`. What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is odd, B = the number of tails is odd.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is two, B = the last throw results in head.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.
Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?
A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
Three machines E1, E2, E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
If A and B are two events, then P (`overline A` ∩ B) =
Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is
Mark the correct alternative in the following question:
If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =
Mark the correct alternative in the following question:
\[\text{ Let A and B are two events such that } P\left( A \right) = \frac{3}{8}, P\left( B \right) = \frac{5}{8} \text{ and } P\left( A \cup B \right) = \frac{3}{4} . \text{ Then } P\left( A|B \right) \times P\left( A \cap B \right) \text{ is equals to } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.