हिंदी

An Urn Contains 4 Red and 7 Black Balls. Two Balls Are Drawn at Random with Replacement. Find the Probability of Getting (Iii) One Red and One Blue Ball. - Mathematics

Advertisements
Advertisements

प्रश्न

An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.

योग

उत्तर

\[\text{ Total balls = 4 red balls + 7 blue balls = 11 balls } \] \[ P\left( \text{ one red and one blue } \right) = P\left( \text{ first red and second blue } \right) + P\left( \text{ first blue and second red } \right)\]
\[ = \frac{4}{11} \times \frac{7}{11} + \frac{7}{11} \times \frac{4}{11}\]
\[ = \frac{28}{121} + \frac{28}{121}\]
\[ = \frac{56}{121}\]
\[\text{ Disclaimer: In the question,instead of black ballsit should be blue balls.} \]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.4 | Q 22.3 | पृष्ठ ५४

संबंधित प्रश्न

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32

 

From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.


A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.


If P (A) = \[\frac{6}{11},\]  P (B) = \[\frac{5}{11}\]  and P (A ∪ B) = \[\frac{7}{11},\]  find

(i) P (A ∩ B)
(ii) P (A/B)
(iii) P (B/A)

Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.


A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row.
Check the independence of A and B.


The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?


The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.


In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?

 

 


AB, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?


A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?

 

A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.


A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

If one ball is drawn at random from each of three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, then the probability that 2 white and 1 black balls will be drawn is


A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]


Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]

 


From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is 


A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×