हिंदी

A Coin is Tossed Three Times. Let the Events A, B And C Be Defined as Follows: A = First Toss is Head, B = Second Toss is Head, And C = Exactly Two Heads Are Tossed in a Row. B And C . - Mathematics

Advertisements
Advertisements

प्रश्न

A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .

योग

उत्तर

\[S = \left[ \left( H H H \right) \left( H H T \right) \left( H T H \right) \left( H T T \right) \left( T H H \right) \left( T H T \right) \left( T T H \right) \left( T T T \right) \right]\]

\[\left( ii \right) P\left( C \right) = \frac{2}{8} = \frac{1}{4}\]
\[P\left( B \right) = \frac{4}{8} = \frac{1}{2}\]
\[P\left( B \cap C \right) = \frac{2}{8} = \frac{1}{4} \neq P\left( B \right)P\left( C \right)\]
\[\text{ Thus, B and C are not independent events } .\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.4 | Q 4.2 | पृष्ठ ५४

संबंधित प्रश्न

Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.


Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .


If A and are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).

 

If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and }  P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and }  P\left( \overline{ A }|\overline{ B } \right) .\]


Two coins are tossed once. Find P (A/B) in each of the following:

A = No tail appears, B = No head appears.


A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.


If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.


Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∪ B).


If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).

 

Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.


Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.


X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.


There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).

 

If A and B are independent events, then write expression for P(exactly one of AB occurs).


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]


Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is


Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]


A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×