हिंदी

If a and B Are Two Events Such that ( I I ) P ( a ) = 6 11 , P ( B ) = 5 11 and P ( a ∪ B ) = 7 11 , Then Find P ( a ∩ B ) , P ( a | B ) a N D P ( B | a ) . - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]

योग

उत्तर

 We have , 
\[P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and}  P\left( A \cup B \right) = \frac{7}{11}\]
\[As, P\left( A \cup B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]
\[ \Rightarrow P\left( A \cap B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cup B \right)\]
\[ \Rightarrow P\left( A \cap B \right) = \frac{6}{11} + \frac{5}{11} - \frac{7}{11}\]
\[ \Rightarrow P\left( A \cap B \right) = \frac{6 + 5 - 7}{11}\]
\[ \Rightarrow P\left( A \cap B \right) = \frac{4}{11}\]
\[\text{ Now } , \]
\[P\left( A|B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)} = \frac{\left( \frac{4}{11} \right)}{\left( \frac{5}{11} \right)} = \frac{4}{5} \text { and }\]
\[P\left( B|A \right) = \frac{P\left( A \cap B \right)}{P\left( A \right)} = \frac{\left( \frac{4}{11} \right)}{\left( \frac{6}{11} \right)} = \frac{4}{6} = \frac{2}{3}\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.3 | Q 5.2 | पृष्ठ ३४

संबंधित प्रश्न

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.


A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.


Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.


The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`.  What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?


Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that

(i) the youngest is a girl                                                 (b) at least one is a girl.      


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


An unbiased die is tossed twice. Find the probability of getting 4, 5, or 6 on the first toss and 1, 2, 3 or 4 on the second toss.


A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.


An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


AB, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?


A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that
(i) both are white
(ii) both are black
(iii) one is white and one is black


A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?

 

Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


Three digit numbers are formed with the digits 0, 2, 4, 6 and 8. Write the probability of forming a three digit number with the same digits.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


If A and B are two events write the expression for the probability of occurrence of exactly one of two events.


Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.

 

In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and }  P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]


Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is


Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).


A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4  heads. 


A and B throw a die alternately till one of them gets a '6' and wins the game. Find their respective probabilities of winning, if A starts the game first.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×