हिंदी

In Order to Supplement Daily Diet, a Person Wishes to Take X and Y Tablets. the Contents (In Milligrams per Tablet) of Iron, Calcium and Vitamins in X and Y Are Given as Below : - Mathematics

Advertisements
Advertisements

प्रश्न

In order to supplement daily diet, a person wishes to take X and Y tablets. The contents (in milligrams per tablet) of iron, calcium and vitamins in X and Y are given as below :

Tablets  Iron Calcium Vitamin
x 6 3 2
y 2 3 4

The person needs to supplement at least 18 milligrams of iron, 21 milligrams of calcium and 16 milligrams of vitamins. The price of each tablet of X and Y is Rs 2 and Rs 1 respectively. How many tablets of each type should the person take in order to satisfy the above requirement at the minimum cost? Make an LPP and solve graphically.

उत्तर

Let the person take x tablets of type X and y tablets of type Y. 
According to the given condition, the person requires at least 18 milligrams of iron.

\[\therefore 6x + 2y \geq 18 \Rightarrow 3x + y \geq 9 . . . . . \left( 1 \right)\]

Also, the person needs atleast 21 milligrams of calcium.

\[\therefore 3x + 3y \geq 21 \Rightarrow x + y \geq 7 . . . . . \left( 2 \right)\]

The person also needs atleast 16 mg of vitamins.

\[\therefore 2x + 4y \geq 16 \Rightarrow x + 2y \geq 8 . . . . . \left( 3 \right)\]

Hence, the given linear programming problem is
Minimise Z = 2x + y
subject to the constraints
3x + y ≥ 9
x + ≥ 7
x + 2≥ 8
and xy ≥ 0
The region represented by the system of inequations given in constraints is shown as the shaded region.

This shaded region repressents the feasible region of the given linear programming problem. The corner points of the feasible region are A(0, 9), B(1, 6), C(6, 1) and D(8, 0).
The values of the objective function at these points are given in the following table.

Corner points Cost (Z = 2x + y)
A(0, 9) Z = 2 × 0 + 9 = 9
B(1, 6) Z = 2 × 1 + 6 = 8
C(6, 1) Z = 2 × 6 + 1 = 13
D(8, 0) Z = 2 × 8 + 0 = 16
 
Now, Z is minimum at (1, 6). The minimum value of is 8. The feasible region is unbounded and the open half plane represented by 2x + y < 8 does not have points in common with the feasible region.
So, is minimum at x = 1 and y = 6.
Hence, the person should take 1 tablet of type X and 6 tablet of type Y in order to meets the minimum requirements at the minimum cost.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A cooperative society of farmers has 50 hectares of land to grow two crops A and B. The profits from crops A and B per hectare are estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, a liquid herbicide has to be used for crops A and B at the rate of 20 litres and 10 litres per hectare, respectively. Further not more than 800 litres of herbicide should be used in order to protect fish and wildlife using a pond which collects drainage from this land. Keeping in mind that the protection of fish and other wildlife is more important than earning profit, how much land should be allocated to each crop so as to maximize the total profit? Form an LPP from the above and solve it graphically. Do you agree with the message that the protection of wildlife is utmost necessary to preserve the balance in environment?


A dietician wishes to mix two kinds ·of food X· and Y in such a way that the  mixture contains at least 10 units of vitamin A, 12 units of vitamin B arid 8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A Vitamin.B Vitamin C
X 1 unit 2 unit 3 unit
Y 2 unit 2 unit 1 unit

Orie kg of food X costs Rs 24 and one kg of food Y costs Rs 36. Using Linear Programming, find the least cost of the total mixture. which will contain the required vitamins.


Maximise z = 8x + 9y subject to the constraints given below :
2x + 3y ≤ 6
3x − 2y ≤6
y ≤ 1
xy ≥ 0


Maximize Z = 7x + 10y
Subject to 

\[x + y \leq 30000\]
\[ y \leq 12000\]
\[ x \geq 6000\]
\[ x \geq y\]
\[ x, y \geq 0\]

 


Minimize Z = 2x + 4y
Subject to 

\[x + y \geq 8\]
\[x + 4y \geq 12\]
\[x \geq 3, y \geq 2\]

 


Minimize Z = x − 5y + 20
Subject to

\[x - y \geq 0\]
\[ - x + 2y \geq 2\]
\[ x \geq 3\]
\[ y \leq 4\]
\[ x, y \geq 0\]


Maximize Z = 3x1 + 4x2, if possible,
Subject to the constraints 

\[x_1 - x_2 \leq - 1\]

\[ - x_1 + x_2 \leq 0\]

\[ x_1 , x_2 \geq 0\]


 Solve the following linear programming problem graphically:
Minimize  z = 6 x + 3 y
Subject to the constraints:

4 x + \[y \geq\] 80
x + 5 \[y \geq\] 115 

3 x + 2 \[y \leq\] 150
\[x \geq\] 0  , \[y \geq\] 0


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


One kind of cake requires 200 g of flour and 25 g of fat, and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no storage of the other ingredients used in making the cakes.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing ₹250 per bag, contains 2 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing ₹200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A manufacturer has three machines installed in his factory. machines I and II are capable of being operated for at most 12 hours whereas Machine III must operate at least for 5 hours a day. He produces only two items, each requiring the use of three machines. The number of hours required for producing one unit each of the items on the three machines is given in the following table:

Item Number of hours required by the machine

A
B
I II III
1
2
2
1
1
5/4

He makes a profit of Rs 6.00 on item A and Rs 4.00 on item B. Assuming that he can sell all that he produces, how many of each item should he produces so as to maximize his profit? Determine his maximum profit. Formulate this LPP mathematically and then solve it.


A company produces two types of leather belts, say type A and B. Belt A is a superior quality and belt B is of a lower quality. Profits on each type of belt are Rs 2 and Rs 1.50 per belt, respectively. Each belt of type A requires twice as much time as required by a belt of type B. If all belts were of type B, the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day (both A and B combined). Belt A requires a fancy buckle and only 400 fancy buckles are available for this per day. For belt of type B, only 700 buckles are available per day.
How should the company manufacture the two types of belts in order to have a maximum overall profit?


A firm makes items A and B and the total number of items it can make in a day is 24. It takes one hour to make an item of A and half an hour to make an item of B. The maximum time available per day is 16 hours. The profit on an item of A is Rs 300 and on one item of B is Rs 160. How many items of each type should be produced to maximize the profit? Solve the problem graphically.


A library has to accommodate two different types of books on a shelf. The books are 6 cm and 4 cm thick and weigh 1 kg and  \[1\frac{1}{2}\] kg each respectively. The shelf is 96 cm long and atmost can support a weight of 21 kg. How should the shelf be filled with the books of two types in order to include the greatest number of books? Make it as an LPP and solve it graphically.

 


A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:
 

Types of Toys Machines
  I II III
A 12 18 6
B 6 0 9
 
Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is ₹7.50 and that on each toy of type B is ₹5, show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

The value of objective function is maximum under linear constraints ______.


 Maximize: z = 3x + 5y  Subject to

x +4y ≤ 24                3x + y  ≤ 21 

x + y ≤ 9                     x ≥ 0 , y ≥0


A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A
require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours and 20 minutes available  for cutting and 4 hours available for assembling. The profit is Rs. 50 each for type A and Rs. 60 each  for type B souvenirs. How many souvenirs of each type should the company manufacture in order to  maximize profit? Formulate the above LPP and solve it graphically and also find the maximum profit. 


The minimum value of z = 10x + 25y subject to 0 ≤ x ≤ 3, 0 ≤ y ≤ 3, x + y ≥ 5 is ______.


The maximum value of z = 6x + 8y subject to x - y ≥ 0, x + 3y ≤ 12, x ≥ 0, y ≥ 0 is ______.


For the function z = 19x + 9y to be maximum under the constraints 2x + 3y ≤ 134, x + 5y ≤ 200, x ≥ 0, y ≥ 0; the values of x and y are ______.


Maximise and Minimise Z = 3x – 4y subject to x – 2y ≤ 0, – 3x + y ≤ 4, x – y ≤ 6, x, y ≥ 0


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then ____________.


The solution set of the inequality 3x + 5y < 4 is ______.


The corner points of the shaded unbounded feasible region of an LPP are (0, 4), (0.6, 1.6) and (3, 0) as shown in the figure. The minimum value of the objective function Z = 4x + 6y occurs at ______.


Solve the following linear programming problem graphically:

Maximize: Z = x + 2y

Subject to constraints:

x + 2y ≥ 100,

2x – y ≤ 0

2x + y ≤ 200,

x ≥ 0, y ≥ 0.


Solve the following Linear Programming Problem graphically.

Maximise Z = 5x + 2y subject to:

x – 2y ≤ 2,

3x + 2y ≤ 12,

– 3x + 2y ≤ 3,

x ≥ 0, y ≥ 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×