हिंदी

A Manufacturer Has Three Machines Installed in His Factory. Machines I and Ii Are Capable of Being Operated for at Most 12 Hours Whereas Machine Iii Must Operate at Least for 5 Hours a Day - Mathematics

Advertisements
Advertisements

प्रश्न

A manufacturer has three machines installed in his factory. machines I and II are capable of being operated for at most 12 hours whereas Machine III must operate at least for 5 hours a day. He produces only two items, each requiring the use of three machines. The number of hours required for producing one unit each of the items on the three machines is given in the following table:

Item Number of hours required by the machine

A
B
I II III
1
2
2
1
1
5/4

He makes a profit of Rs 6.00 on item A and Rs 4.00 on item B. Assuming that he can sell all that he produces, how many of each item should he produces so as to maximize his profit? Determine his maximum profit. Formulate this LPP mathematically and then solve it.

योग

उत्तर

Let  units of item A and units of item B be manufactured.
Therefore, \[x, y \geq 0\]

As we are given,

Item Number of hours required by the machine

A
B
I II III
1
2
2
1
1
5/4

Machines I and II are capable of being operated for at most 12 hours whereas Machine III must operate at least for 5 hours a day.
According to question, the constraints are

\[x + 2y \leq 12\]

\[2x + y \leq 12\]

\[x + \frac{5}{4}y \geq 5\]

He makes a profit of Rs 6.00 on item A and Rs 4.00 on item B.
Profit made by him in producing x items of A and y items of B is 6x + 4y.
Total profit Z = \[6x + 4y\] which is to be maximised
Thus, the mathematical formulat​ion of the given linear programmimg problem is 
Max Z =\[6x + 4y\] subject to

\[x + 2y \leq 12\]
\[2x + y \leq 12\]
\[x + \frac{5}{4}y \geq 5\]

\[x, y \geq 0\]

First we will convert inequations into equations as follows :
x + 2y = 12, 2x + y = 12,

\[x + \frac{5}{4}y = 5\] , x = 0 and y = 0

Region represented by x + 2y ≤ 12:
The line x + 2y = 12 meets the coordinate axes at A1(12, 0) and B1(0, 6) respectively. By joining these points we obtain the line x + 2y = 12.Clearly (0,0) satisfies the x + 2y = 12. So, the region which contains the origin represents the solution set of the inequation x + 2y ≤ 12.
Region represented by 2x + y ≤ 12:
The line 2x + y = 12 meets the coordinate axes at C1(6, 0) and D1(0, 12) respectively. By joining these points we obtain the line 2x + y = 12. Clearly (0,0) satisfies the inequation 2x + y ≤ 12. So,the region which contains the origin represents the solution set of the inequation 2x + y ≤ 12.
Region represented by \[x + \frac{5}{4}y = 5\]
The line \[x + \frac{5}{4}y = 5\] meets the coordinate axes at E1(5, 0) and F1(0, 4) respectively. By joining these points we obtain the line
\[x + \frac{5}{4}y = 5\].  Clearly (0,0) does not satisfies the inequation
\[x + \frac{5}{4}y \geq 5\]  So , the Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So,the region which does not contains the origin represents the solution set of the inequation \[x + \frac{5}{4}y \geq 5\] 
region represented by the inequations x ≥ 0, and ≥ 0.
The feasible region determined by the system of constraints x + 2y ≤ 12, 2x + y ≤ 12,
\[x + \frac{5}{4}y \geq 5\] , x ≥ 0, and y ≥ 0 are as follows.

The corner points are B1(0, 6), G1(4, 4), C1(6, 0), E1(5, 0) and F1(0, 4).

The values of Z at these corner points are as follows
 
Corner point Z = 6x + 4y
B1 24
G1 40
C1 36
E1 30
F1 16

The maximum value of Z is 40 which is attained at G1(4, 4).

Thus, the maximum profit is Rs 40 obtained when 4 units each of item A and B are manufactured.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Linear programming - Exercise 30.4 [पृष्ठ ५०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 30 Linear programming
Exercise 30.4 | Q 2 | पृष्ठ ५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the following L.P.P graphically:

Maximize: Z = 10x + 25y
Subject to: x ≤ 3, y ≤ 3, x + y ≤ 5, x ≥ 0, y ≥ 0


Minimize :Z=6x+4y

Subject to : 3x+2y ≥12

x+y ≥5

0 ≤x ≤4

0 ≤ y ≤ 4 


A manufacturer produces two products A and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at Rs 7 profit and  B at a profit of Rs 4. Find the production level per day for maximum profit graphically.


Solve the following linear programming problem graphically :

Maximise Z = 7x + 10y subject to the constraints

4x + 6y ≤ 240

6x + 3y ≤ 240

x ≥ 10

x ≥ 0, y ≥ 0


Maximize Z = 4x + 3y
subject to

\[3x + 4y \leq 24\]
\[8x + 6y \leq 48\]
\[ x \leq 5\]
\[ y \leq 6\]
\[ x, y \geq 0\]


Maximize Z = 10x + 6y
Subject to

\[3x + y \leq 12\]
\[2x + 5y \leq 34\]
\[ x, y \geq 0\]


Maximize Z = 7x + 10y
Subject to 

\[x + y \leq 30000\]
\[ y \leq 12000\]
\[ x \geq 6000\]
\[ x \geq y\]
\[ x, y \geq 0\]

 


Minimize Z = 3x1 + 5x2
Subject to

\[x_1 + 3 x_2 \geq 3\]
\[ x_1 + x_2 \geq 2\]
\[ x_1 , x_2 \geq 0\]

 


Maximize Z = 3x + 3y, if possible,
Subject to the constraints

\[x - y \leq 1\]
\[x + y \geq 3\]
\[ x, y \geq 0\]


Find graphically, the maximum value of Z = 2x + 5y, subject to constraints given below:

2x + 4y ≤ 8
3x + y ≤ 6
x + y ≤ 4 
x ≥ 0, ≥ 0   


A hospital dietician wishes to find the cheapest combination of two foods, A and B, that contains at least 0.5 milligram of thiamin and at least 600 calories. Each unit of Acontains 0.12 milligram of thiamin and 100 calories, while each unit of B contains 0.10 milligram of thiamin and 150 calories. If each food costs 10 paise per unit, how many units of each should be combined at a minimum cost?


A dietician has to develop a special diet using two foods P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity of food Q contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and at most 300 units of cholesterol. How many packets of each food should be used to minimise the amount of vitamin A in the diet? What is the minimum of vitamin A.


A farmer mixes two brands P and Q of cattle feed. Brand P, costing ₹250 per bag, contains 2 units of nutritional element A, 2.5 units of element B and 2 units of element C. Brand Q costing ₹200 per bag contains 1.5 units of nutritional element A, 11.25 units of element B and 3 units of element C. The minimum requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively. Determine the number of bags of each brand which should be mixed in order to produce a mixture having a minimum cost per bag? What is the minimum cost of the mixture per bag?


A small manufacturer has employed 5 skilled men and 10 semi-skilled men and makes an article in two qualities deluxe model and an ordinary model. The making of a deluxe model requires 2 hrs. work by a skilled man and 2 hrs. work by a semi-skilled man. The ordinary model requires 1 hr by a skilled man and 3 hrs. by a semi-skilled man. By union rules no man may work more than 8 hrs per day. The manufacturers clear profit on deluxe model is Rs 15 and on an ordinary model is Rs 10. How many of each type should be made in order to maximize his total daily profit.


A furniture manufacturing company plans to make two products : chairs and tables. From its available resources which consists of 400 square feet to teak wood and 450 man hours. It is known that to make a chair requires 5 square feet of wood and 10 man-hours and yields a profit of Rs 45, while each table uses 20 square feet of wood and 25 man-hours and yields a profit of Rs 80. How many items of each product should be produced by the company so that the profit is maximum?


A factory uses three different resources for the manufacture of two different products, 20 units of the resources A, 12 units of B and 16 units of C being available. 1 unit of the first product requires 2, 2 and 4 units of the respective resources and 1 unit of the second product requires 4, 2 and 0 units of respective resources. It is known that the first product gives a profit of 2 monetary units per unit and the second 3. Formulate the linear programming problem. How many units of each product should be manufactured for maximizing the profit? Solve it graphically.


A publisher sells a hard cover edition of a text book for Rs 72.00 and paperback edition of the same ext for Rs 40.00. Costs to the publisher are Rs 56.00 and Rs 28.00 per book respectively in addition to weekly costs of Rs 9600.00. Both types require 5 minutes of printing time, although hardcover requires 10 minutes binding time and the paperback requires only 2 minutes. Both the printing and binding operations have 4,800 minutes available each week. How many of each type of book should be produced in order to maximize profit?


A merchant plans to sell two types of personal computers a desktop model and a portable model that will cost Rs 25,000 and Rs 40,000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs 70 lakhs and his profit on the desktop model is Rs 4500 and on the portable model is Rs 5000. 


An aeroplane can carry a maximum of 200 passengers. A profit of ₹1000 is made on each executive class ticket and a profit of ₹600 is made on each economy class ticket. The airline reserves atleast 20 seats for executive class. However, atleast 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximise the profit of the airline. What is the maximum profit?


A manufacturer considers that men and women workers are equally efficient and so he pays them at the same rate. He has 30 and 17 units of workers (male and female) and capital respectively, which he uses to produce two types of goods A and B. To produce one unit of A, 2 workers and 3 units of capital are required while 3 workers and 1 unit of capital is required to produce one unit of B. If A and B are priced at ₹100 and ₹120 per unit respectively, how should he use his resources to maximise the total revenue? Form the above as an LPP and solve graphically. Do you agree with this view of the manufacturer that men and women workers are equally efficient and so should be paid at the same rate?


By graphical method, the solution of linear programming problem

\[\text{Maximize}\text{ Z }= 3 x_1 + 5 x_2 \]
\[\text{ Subject }  to \text{ 3 } x_1 + 2 x_2 \leq 18\]
\[ x_1 \leq 4\]
\[ x_2 \leq 6\]
\[ x_1 \geq 0, x_2 \geq 0, \text{ is } \]

A manufacturer has employed 5 skilled men and 10 semi-skilled men and makes two models A and B of an article. The making of one item of model A requires 2 hours of work by a skilled man and 2 hours work by a semi-skilled man. One item of model B requires 1 hour by a skilled man and 3 hours by a semi-skilled man. No man is expected to work more than 8 hours per day. The manufacturer's profit on an item of model A is ₹ 15 and on an item of model B is ₹ 10. How many items of each model should be made per day in order to maximize daily profit? Formulate the above LPP and solve it graphically and find the maximum profit.


The maximum value of z = 6x + 8y subject to x - y ≥ 0, x + 3y ≤ 12, x ≥ 0, y ≥ 0 is ______.


The minimum value of z = 2x + 9y subject to constraints x + y ≥ 1, 2x + 3y ≤ 6, x ≥ 0, y ≥ 0 is ______.


Of all the points of the feasible region for maximum or minimum of objective function the points.


A set of values of decision variables which satisfies the linear constraints and nn-negativity conditions of an L.P.P. is called its ____________.


Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and ____________.


The comer point of the feasible region determined by the following system of linear inequalities:

2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let x = Px + qx where P, q > 0 condition on P and Q so that the maximum of z occurs at both (3, 4) and (0, 5) is


Solve the following Linear Programming Problem graphically:

Maximize Z = 400x + 300y subject to x + y ≤ 200, x ≤ 40, x ≥ 20, y ≥ 0


The maximum value of 2x + y subject to 3x + 5y ≤ 26 and 5x + 3y ≤ 30, x ≥ 0, y ≥ 0 is ______.


The objective function Z = x1 + x2, subject to the constraints are x1 + x2 ≤ 10, – 2x1 + 3x2 ≤ 15, x1 ≤ 6, x1, x2 ≥ 0, has maximum value ______ of the feasible region.


Solve the following linear programming problem graphically:

Minimize: Z = 5x + 10y

Subject to constraints:

x + 2y ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x ≥ 0, y ≥ 0.


Minimize z = x + 2y,

Subject to x + 2y ≥ 50, 2x – y ≤ 0, 2x + y ≤ 100, x ≥ 0, y ≥ 0.


Draw the rough graph and shade the feasible region for the inequalities x + y ≥ 2, 2x + y ≤ 8, x ≥ 0, y ≥ 0.


Aman has ₹ 1500 to purchase rice and wheat for his grocery shop. Each sack of rice and wheat costs ₹ 180 and Rupee ₹ 120 respectively. He can store a maximum number of 10 bags in his shop. He will earn a profit of ₹ 11 per bag of rice and ₹ 9 per bag of wheat.

  1. Formulate a Linear Programming Problem to maximise Aman’s profit.
  2. Calculate the maximum profit.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×