Advertisements
Advertisements
प्रश्न
A bag contains 4 identical red balls and 3 identical black balls. The experiment consists of drawing one ball, then putting it into the bag and again drawing a ball. What are the possible outcomes of the experiment?
उत्तर
A bag contains four identical red balls (R) and three identical black balls (B).
The sample space S of drawing one ball with replacement and then again drawing a ball is given by
S = {RR, RB, BR, BB}
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed and a die is thrown.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
Write the sample space for the experiment of tossing a coin four times.
A coin is tossed and then a die is rolled only in case a head is shown on the coin. Describe the sample space for this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
There are three coloured dice of red, white and black colour. These dice are placed in a bag. One die is drawn at random from the bag and rolled its colour and the number on its uppermost face is noted. Describe the sample space for this experiment.
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is picked up from a deck of 52 playing cards.
What is the event that the chosen card is a black faced card?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red and two are white
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have two men?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is odd?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at least one girl?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that both the tickets have prime numbers on them
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
What is the probability that the 13th days of a randomly chosen month is Friday?
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
Two dice are thrown together. The probability that at least one will show its digit greater than 3 is
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
Three digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.