Advertisements
Advertisements
प्रश्न
Find the probability that in a random arrangement of the letters of the word 'SOCIAL' vowels come together.
उत्तर
There are six letters in the word ‘SOCIAL’, which can be arranged in 6! ways.
There are three vowels, namely O, I and A.
Let us consider these three vowels as one letter.
So, when the three vowels are clubbed together, we have (O, I, A) SCL. We can arrange four letters in a row in 4! ways.
Also, the three vowels can themselves be arranged in 3! ways.
Hence, required probability = \[\frac{4! \times 3!}{6!} = \frac{4! \times 3 \times 2}{6 \times 5 \times 4!} = \frac{1}{5}\]
APPEARS IN
संबंधित प्रश्न
An experiment consists of recording boy-girl composition of families with 2 children.
(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?
(ii) What is the sample space if we are interested in the number of girls in the family?
An experiment consists of tossing a coin and then throwing it second time if a head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the sample space.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
If a coin is tossed two times, describe the sample space associated to this experiment.
What is the total number of elementary events associated to the random experiment of throwing three dice together?
A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
A coin is tossed twice. If the second throw results in a tail, a die is thrown. Describe the sample space for this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(ii) Which events are elementary events?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither an ace nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has 1 boys and 2 girls?
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that one ball is white.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that either both are black or both are kings.
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Calculate \[P\left( \bar{ B} \right)\] from P(B), also calculate \[P\left( \bar{ B } \right)\] directly from the elementary events of \[\bar{ B } \] .
n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.
What is the probability that a leap year will have 53 Fridays or 53 Saturdays?
Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
What is the probability that the 13th days of a randomly chosen month is Friday?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
One card is drawn from a pack of 52 cards. The probability that it is the card of a king or spade is
What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.