Advertisements
Advertisements
प्रश्न
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
उत्तर
Let S denote the sample space.
Then n(S) = 52
Thus, five cards can be drawn in 52C5 ways.
∴ Total number of elementary events = 52C5
Probability for at least one ace = 1 – Probability (no ace)
= \[1 - \frac{^{48}{}{C}_5}{^{52}{}{C}_5}\]
= \[1 - \frac{35673}{54145} = \frac{18472}{54145}\]
APPEARS IN
संबंधित प्रश्न
Describe the sample space for the indicated experiment: A coin is tossed four times.
Describe the sample space for the indicated experiment: A coin is tossed and a die is thrown.
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment?
If a coin is tossed two times, describe the sample space associated to this experiment.
A coin is tossed twice. If the second draw results in a head, a die is rolled. Write the sample space for this experiment.
A bag contains one white and one red ball. A ball is drawn from the bag. If the ball drawn is white it is replaced in the bag and again a ball is drawn. Otherwise, a die is tossed. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
List all events associated with the random experiment of tossing of two coins. How many of them are elementary events.
Three coins are tossed once. Describe the events associated with this random experiment:
A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?
A card is picked up from a deck of 52 playing cards.
What is the event that the chosen card is a black faced card?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
Tickets numbered from 1 to 20 are mixed up together and then a ticket is drawn at random. What is the probability that the ticket has a number which is a multiple of 3 or 7?
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
The letters of the word 'FORTUNATES' are arranged at random in a row. What is the chance that the two 'T' come together.
A committee of two persons is selected from two men and two women. What is the probability that the committee will have no man?
Two balls are drawn at random from a bag containing 2 white, 3 red, 5 green and 4 black balls, one by one without, replacement. Find the probability that both the balls are of different colours.
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has all girls?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that on one there is a prime number and on the other there is a multiple of 4.as
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that both the balls are red .
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
If E and E2 are independent evens, write the value of P \[\left( ( E_1 \cup E_2 ) \cap (E \cap E_2 ) \right)\]
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is
Four persons are selected at random out of 3 men, 2 women and 4 children. The probability that there are exactly 2 children in the selection is
A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is
If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is
An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds and hearts and black suits are clubs and spades. The cards J, Q, and K are called face cards. Suppose we pick one card from the deck at random. What is the event that the chosen card is a black face card?
The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.
Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.